o — S8V

LTI T e

KEMENTERIAN SUMBER ASLI, ALAM SEKITAR
DAN PERUBAHAN IKLIM
Ministry of Natural Resources, Environmen t
And Climate Change

MALAYSIAN METEOROLOGICAL DEPARTMENT
MINISTRY OF NATURAL RESOURCES, ENVIRONMENT
AND CLIMATE CHANGE

Technical Note No. 3/2022

Estimation of Maximum Wave Height at In-situ
Wave Observation Sites in Malaysia

Yip Weng Sang and Nursalleh K Chang




TECHNICAL NOTE NO. 3/2022

Estimation of Maximum Wave Height at In-situ
Wave Observation Sites in Malaysia

By
Yip Weng Sang and Nursalleh K Chang



All rights reserved. No part of this publication may be reproduced in any
form, stored in a retrieval system, or transmitted in any form or by any
means electronic, mechanical, photocopying, recording or otherwise
without the prior written permission of the publisher.

Perpustakaan Negara Malaysia Data Pengkatalogan-dalam-Penerbitan

Published and printed by:
Jabatan Meteorologi Malaysia
Jalan Sultan
46667 Petaling Jaya
Selangor Darul Ehsan
Malaysia



Contents

No. Subject Page
Abstract
1. | Introduction 1
2. | Data
2.1 Statistics of Hs and Hmax
2.2 Correlation Analysis with Respect to Hmax 14
3. | Methodology
3.1 Ratio of Hmaxto Hs 25
3.2 Methods of Estimating Maximum Wave Height
3.2.1 Rayleigh Distribution 33
3.2.2 Linear Regression 33
3.2.3 Polynomial Regression 34
3.2.4 Power Regression 34
3.2.5 Multiple Linear Regression (MLR) 35
3.2.6 Deep Learning 35
4. | Results and Analysis
4.1 Scatterplot and Boxplot Analysis 36
4.2 Regression Analysis 52
4.3 K-Fold Stratified Cross Validation 54
5. | Conclusion 56
6. | Acknowledgement 57
7. | References 58




Estimation of Maximum Wave Height at In-situ Wave Observation
Sites in Malaysia

Yip Weng Sang and Nursalleh K. Chang

Abstract

The relationship between wave parameters is studied to find the most suitable method of
estimating maximum wave height. Long-term in-situ wave observations in all seasons, and
short-term in-situ wave observations during periods that coincides with strong winds and
rough seas warnings issued by MET Malaysia, are analyzed. Correlation analysis of
observations revealed that significant wave height observations are highly correlated with
observed maximum wave height. On the other hand, the number of waves and wind speed
is generally poorly correlated with observed maximum wave height. Kolmogorov-Smirnov
significance test indicates that observed maximum wave height distribution does not follow
either Rayleigh or Weibull distribution, at the 0.05 significance level. Estimation of maximum
wave height using Rayleigh Distribution, regression, and neural networks are studied. The
Rayleigh Distribution severely overestimates maximum wave height. On the contrary,
regression and neural networks showed equal skill, and can estimate maximum wave height
better. On average, the ratio of maximum wave height to significant wave height measured
in shallow waters, where the depth is less than 20m, is 1.27 based on long-term, all-season
observations. In deeper waters of depth 450m, the ratio is 1.50. At periods coinciding with
rough seas and strong winds corresponding to thunderstorm warnings and marine warnings
issued by MET Malaysia, the ratio increased to between 1.50 — 1.60. The accuracy of
maximum wave height estimation by simply multiplying significant wave height by fixed 1.27
(depth less than 20m) or 1.50 otherwise, showed comparable mean absolute error, with

regression or neural network.



1. Introduction

Maximum wave height (Hmax) estimation is important in the safety design of oil
platforms, ships, and other maritime structures. Hmax iS not a deterministic quantity,
but a statistical quantity. Statistical distributions have been used to derive Hmax.

Longuet-Higgins (1952) defined wave amplitude (a) as %2 the distance between
the highest point of the wave to the lowest point of the previous wave. Wave trains
with narrow frequency bandwidth that can be decomposed into numerous smaller,
independent components are modelled. Based on this model and assumptions, the
expected Hmax is:

E(H,.0.) = 0.70621 x H, X [,/(zogzv) +- Z)QN] ~ ()
where Hmax is the maximum wave amplitude, Hs is the significant wave height, N is
number of waves equals to period of observation (Td) divided by mean wave period
(Tmean). Meanwhile, the most probable Hmax is:

U(Hpax) = 0.70621 X \/logN — (2)

This distribution is colloquially known as Rayleigh distribution, after Lord
Rayleigh who modelled acoustic amplitudes from many random sound sources.
However, Forristal (1978) reported that the Rayleigh distribution tends to overestimate
height of the highest wave. Based on one hundred sixteen (116) hours of data in the
Gulf of Mexico during hurricanes, Forristal (1978) fitted an empirical Weibull
distribution:

E(x) = exp (- %) ~ @)

x =—2__(3a)

- (mo)l/z

where Hois wave height, mo is mean-square of the wave profile, E(x) is the probability
of wave height more than or equals to x. Coefficients a, 8 are calculated by linear-
straight-line fitting. Based on Equation 3, the Hmax is:

E(Hma) = (86,07 (1+ L) - (4)

where E (x4, )is the expected Hmax, 6, = InN where N is number of waves, y = 0.5772
(Euler’s constant). Forristal (1978) fitted the Empirical Weibull distribution (Equation 4)
on 116 hours of wave data in the Guld of Mexico during hurricanes. A close fit was
reported for the proposed Empirical Weibull distribution, and it performed better than
the Rayleigh distribution. Forristal (1978) defined wave height as distance between
trough and next crest.



Krogstad (1985) analyzed 3-hourly in-situ, wave data observations in the
Norwegian Sea with records between 4-6 years. It was reported that the Rayleigh
distribution failed to represent upper-tail wave heights, although it gave a reasonably
well estimation of overall wave height. Wave parameters are estimated using zero up-
crossing analysis. Krogstad (1985) attempted to fit the two-parameter Weibull
distribution and observed that is suitable for wave height estimation in the upper tail of
the distribution. The two-parameter Weibull distribution suggested is:

a\1No
F(X) = [1 — exp (— %)] - (5)

Where X is Hmax normalized by 1/4 significant wave height, F(X) is probability of X not
exceeding x; a, 8, N, are constants solved by linear fitting, and N is number of waves
that is duration of record divided by peak wave period. The expected ratio of Hmax to
Hs is:
0.5722
alogN

Hmax 1
E (H—) = 0.25(BlogN)e |1+ 22| — (6)

Muraleedharan (2007) studied wave data in the eastern Arabian seas during
rough monsoon conditions for both deep and shallow depths. Zero-crossing wave
analysis was used to compute Hs. 33,000 data over a period of 10 years were used.
A modified Weibull distribution was proposed to estimate Hmax and Hs. The modified
distribution was reportedly more effective in simulating Hmax distribution and other
wave height parameters, compared to the standard Weibull and Rayleigh distributions.
The equations proposed by Muraleedharan (2007) are detailed below:

P(h) = exp (ab - (g i+ a)b> -7

where P(h) is probability of wave height exceeding h, «, a, § are coefficients to be fitted
via Maximum Likelihood Estimation. The mean Hmax is:

(_1)T+1

Hpax = a - b~t- F(%) : [n(l - ab) - n-(n—ll) x (1- Zab) + e 4

T T -(1—n-ab)]—
®) |

where I' represents Gamma Function while ! is factorial. Most frequent maximum wave
height is:

Ai\/A2—4(A—bab+ab+1)ab(b—1)

Hprm = a —a|—(9)

2(A-bab+ab+1)



where A = nba? + ba? + nb —a®? — 1, n is the number of waves. Meanwhile, the
return period (Rp) for Hmax (hr) is in Equation 10, where N is the number of daily
maximum wave heights.
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On the other hand, Vandever et al. (2008) proposed the usage of spectral width
parameter v to correct Hs, which is then used to calculate Hmax using Rayleigh
distribution. Hmax is defined as maximum individual successive crest to trough
distance. Spectral width parameter is defined by Equation 11:

= [moma 4
v= [Ret-1-(11)

where v is the spectral width parameter known as the normalized radius of gyration.
Ratio of Hiz to mo%° is plotted against v and linearly fitted to Equation 12:

His3 = [a = Bvlym, - (12)

where H'ys is the bandwidth corrected significant wave height. Calculations of Hmax
using H'13 showed less error with respect to observations taken from in-situ stations.

Kurtosis is a measure of how much data is in the tail or extreme end of the
distribution. Janssen and Bidlot (2009) used kurtosis to estimate the Hmax based on
Equation 13:

< Hpax >=V<z> =7, +§+%log[1 + 64{22’;(20 - 1) —y(1-22) _%(yz +%2)}]
- (13)
Z, = %logN — (13a)
N =2~ (13D)

where < Hmax > is the expected maximum wave height, N is the number of waves, To
is duration of record and Tr is the peak period, y is the Euler's constant, and Cas is
kurtosis. Good agreement was reported between modelled and observed Hmax In
Canadian offshore buoys from 2006-2008 for 18-minute interval observations.

Feng (2014) also reported that Hmax/ Hsis linearly related to kurtosis as follows:

H‘:Imx = (0.49 + 0.01) * kurtosis — (14)

N



Based on the relationship between Hmax / Hsto number of waves N, Feng (2014)
proposed Equation 15 which is a modified Rayleigh distribution, to estimate Hmax:

Hmax _ JInN 4 1.7(Hs=15) (15)

Hg 1.555 100

It was reported that estimation of the largest waves has improved compared to
conventional Rayleigh and Weibull distributions.

Zhuo and Sato (2015) analyzed two large typhoons that caused significant
damage to concrete breakwater in Japan. Typhoon Wipha had lower wave height than
Typhoon Man-yi but caused more damage. It was argued that Hs on its own could not
fully account for extreme wave heights. Further analysis revealed that higher kurtosis
tends to increase Hmax t0 Hs ratio which leads to more extreme waves. Kurtosis is
defined as

1

1 _
o =~ ZiL (n; —7)* - (16)

Tl‘rtms
where n is surface elevation, and nms is root mean square elevation, N is the number
of waves, and 77 is the mean surface elevation.

Chun and Suh (2019) proposed calculating Hmax using the peaked-ness
parameter Qp , spectral wave period Tm-1,0, and significant wave height Hmo measured
by wave spectral parameters. The least-squares method was used to fit Hmax and
derive Equation 17. Hmax estimation agrees well with in-situ observation data from the
East Sea, Japan, and southeast coast of Korea.

_ 0.03
Hpmax = 1.65HmoT29%(0, — 1) 7 = (17)

Barbariol et al. (2019) reported that Hmax is influenced by waves steepness,
kurtosis, and minimum of the autocovariance function which is one measure of
spectral bandwidth. The following equation 18 was proposed:

— 1
Anaxna = 20T =97 (InN)z (1 + =) - (18)

where H,,q. vaiS the expected maximum (crest-to-trough) wave height at single point
with N waves, o is sea surface elevation standard deviation, y*is the minimum
autocovariance function of the sea surface elevation (t), y is the Euler-Mascheroni
constant (0.5772). Values of estimated H,,q, yshave high correlation with OWS-P
wave buoy observations in the North Pacific Ocean from June 2010 — December 2014.

Agrawal and Deo (2004) reported that regression and Neural Networks are
useful tools for estimating Hmax using Hs at an offshore observation site in India with
data over a period of 1 year at 20 minutes interval.



This study aims to determine the most accurate method of determining Hmax.
The Data Section describes the in-situ observation data used in this study. It is
followed by statistical analysis of Hs and Hmax followed by correlation analysis of wave
periods, wind speed, and Hs with respect to Hmax. The regression methods and neural
network used in estimating Hmax are described next in the Methodology Section.
Evaluation of the skill for each method in estimating Hmax is contained in the Results
and Analysis Section. The Conclusion Section summarizes this study, the
Acknowledgement, and References Section is the final section of this work.

2.0 Data

Four (4) Acoustic Doppler Current Profiler (ADCP) sensors were used in this study for
in-situ wave observation. ADCP transmits pulses of acoustic waves, and uses Doppler
shift to calculate sea current velocity, and measures wave height based on time taken
to receive reflected acoustic waves. The Teledyne RDI Workhorse Sentinel ADCP
1,200kHZ system, with NEMO wave processing unit, was used in this study. Rorbaek
and Anderson (2000) compared wave spectrum and height measurements made by
a 1,200kHZ ADCP with a well-maintained S4 electromagnetic current meter in the
Danish west coast. The period of measurements was from November 1999 to January
2000 when adverse weather conditions were observed. It was reported that overall
statistical parameters observed by ADCP are reasonably consistent with the S4
current meter, and the ADCP can measure higher frequency waves than S4.

Meanwhile, a Wavescan buoy manufactured by Fugro OCEANOR was used to
measure wave height, period, and direction. Wave parameters are calculated based
on Heave, Roll, and Pitch observed by accelerometers, rate gyros, and
magnetometers installed in the Wavescan buoy. The Wavescan buoy is located at the
sea surface but anchored to the seabed. Schematics show that sea depth at the
Wavescan buoy is 450m. Additionally, wind speed and direction are measured using
propeller and vertical shafts with stainless steel, precision ball bearings. Current
velocity is measured by an acoustic doppler sensor located in the Wavescan buoy but
always in contact with the sea. In-situ observation sites are mapped in Figure 1.
Station name, latitude, longitude, depth, location, interval of wave observation, number
of non-missing datapoint, and period of observation are tabulated in Table 1.

Each station is given generic names. LT are long-term site observations with at
least-1-year of data. ST are shorter term site observations of at most 5-days. Site
observations LT1 to LT4 use ADCP sensors while site observation LT5 uses
Wavescan buoy. Site observations LT1 to LT5 are long-term (4-9 years of hourly wave
records) while site observations ST1 to ST5 are short-term (1-5 days of minute wave
records) wave observations made during strong winds and rough seas. Sites LT1 to
LT4 are shallow at less than 20m depth. On the other hand, ST4 is deepest (depth
1,550m), followed by ST5 and LT5 near 500m depth. Remaining sites ST1, ST2, and
ST3 have sea depth between 60m to 80m. The LT1 observation site is the only station
in the Straits of Malacca. Meanwhile, there are 4 observation sites, LT2, ST1, ST2 and
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ST3 off the East Coast of Peninsula Malaysia in the South China Sea. Another 4
observation sites, LT3, LT5, ST4, and ST5 are located off the shores of Kota Kinabalu
and Miri. LT4 is the only site in the Celebes Sea.

Figure 1. In-situ observation sites or station’s locations

The depth of LT5 (No. 5, Table 1) has been given in a schematic diagram
documented by MET Malaysia. The depth of the remaining observation sites is
calculated based on their latitude and longitude coordinates from GEBCO at resolution
0.004° dataset, using minimum depth, at +/- 0.004° box centered at site latitude,
longitude. The data points represent the number of non-missing wave observations.

This study considers the following wave data of significant wave height
thereafter referred to as Hs, maximum wave height thereafter referred to as Hmax, zero-
crossing wave period (Tz), mean wave period (Tm), and peak wave period (Tr). The Hs
is defined as the mean of the third highest waves measured, or four times the square
root of the zeroth-order moment of the wave spectrum. It was first created by
oceanographer Walter Munk as a statistical quantity that nearly matches visual wave
observations. The World Meteorological Organization describes Hs as a common
statistical description of the sea state. On the other hand, the Hmax is the highest wave
height observed within the period. It is an important parameter in designing marine
structures, for example vertical breakwaters. The T:is the record length divided by the
number of wave-up-crosses (or down-crosses), the Tmis is the period associated with
the mean frequency of the wave spectrum, while the Tp is the period associated with
the most energetic wave at that specific point.



Table 1. Information about In-situ Observation Sites. Shallow Sites (depth<20m) in bold

Latitude

Longitude

Depth

Data

No. | Site ©N) E) m) Location Interval Points Duration
'Dolphin’, Pulau
1 LT1 | 4.22475 | 100.53682 18 Mentagor, Pangkor Hourly | 20,519 2009/02/15 -
. 2019/06/21
(Straits of Malacca)
Bikon Jabatan Laut
2 | LT2 | 591025 | 102.70975 19 Pulau Perhentian | Hourly | 24,081 ;822;2?[//%%_
(South China Sea)
Jeti Institut
Penyelidikan Marin
3 | LT3 | 6.04060 | 116.10930 13 Borneo, UMS Hourly | 16,510 2009703 /27 -
) 2019/04 /22
Kota Kinabalu,
Sabah
Seaventures
Sipadan Resort,
4 LT4 | 4.25393 | 118.63297 14 Mabul Semporna, Hourly | 25,380 2009/03/31
2019/06/21
Sabah (Celebes
Sea)
Pulau Layang-
201 1/01-
5 LT5 | 7.37500 | 113.79000 450 Layang (South | Hourly | 23,634 013/01/0
4 2017/09/ 28
China Sea)
Petronas Site
6 | ST1 | 5.82903 | 104.15720 79 (South China Sea) | Minute 1,438 | 2022/06/29
off Terengganu
Petronas Site
7 ST2 | 5.60917 | 103.90610 66 (South China Sea) | Minute 1,440 | 2020/06/ 29
off Terengganu
2022 / 02 / 23,
Petronas Site 2022 / 02 / 28,
8 | ST3 | 5.03019 | 105.20247 75 (South China Sea) | Minute 4,591 | 2022 /04 / 03,
off Terengganu 2022 / 04 / 08,
2022 /04 /27
Petronas Site
9 | ST4 | 593612 | 111.74350 | 1550 | (South China Sea) | Minute 1,183 2022 /04 1 08,
- 2022 /04 /27
off Miri, Sarawak
Petronas Site
10 | ST5 | 5.38509 | 114.22094 441 (South China Sea) | Minute 2,060 | 2022/06/28
off Labuan




2.1 Statistics of Hs and Hmax

Out of 10 stations in this study, in-situ observations by the LT5 site showed the highest
Hmax. The most common (mode) Hmaxis between 0.60 — 0.80m with median of 0.94m.
The highest reported Hmax measured by the LT5 site is 5.86m. This may happen
because LTS5 is in Layang-Layang Island, in the open seas with longer period of
observation compared to other sites also in the open seas, such as ST4. In addition,
site observations in the South China Sea may be exposed to intense northeasterly
winds during the winter monsoon cold surges. They also risk exposure to tropical
storms in the western North Pacific and South China Sea.

Meanwhile, in-situ observations at shallower waters (depth less than 20m), and
located closer to land, are observed to have lower Hmax and Hs. For example,
Observations at LT1, LT2, LT3, and LT4 have the most common (mode) Hmax of 0.20
— 0.40m, with median at most 0.30m. Figures 2. depicts the frequency histogram and
probability density function (PDFs) of Hs and Hmax. The PDFs show that the Hmax and
Hs are skewed the right (median>mode), especially for sites with long-term
observations (5-10 years, they are LT1,LT2, LT3, LT4, and LT5). Right-skewed curves
indicate potential for extreme wave heights.

1Tl
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Figure 2a. Histogram of Hmax (blue) and Hsig (red) for LT1 (20,519 data points)
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Figure 2b. Histogram of Hmax (blue) and Hsig (red) for LT2 (24,081 data points).
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Figure 2c. Histogram of Hmax (blue) and Hsig (red) for LT3 (16,510 data points).
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Figure 2d. Histogram of Hmax (blue) and Hsig (red) for LT4 (25,380 data points).
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Figure 2e. Histogram of Hmax (blue) and Hsig (red) for LT5 (23,634 data points).
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Extreme value analysis is crucial for risk assessment. It is important to know
the highest maximum wave height that will occur after N years. Goda (2000)
suggested that the standard method of extreme value analysis is by fitting the best
probability distribution function to the dataset. In this study, we attempted to fit Hmax to
Rayleigh and Weibull Distributions. Their cumulative distribution functions are:

Rayleight CPDF,F(x) =1 —exp [— %] —(19a)

ok
Weibull CPDF,F(x) = 1 — exp [— (%) ] — (19b)

where F(x) is the probability of Hmax being less than or equals to x. The coefficients
are determined by the Maximum Likelihood Method, and the goodness-of-fit are
evaluated using the Kolmogorov-Smirnov (KS) test. The D-statistic, which is the
maximum absolute difference between cumulative probability density function (CPDF)
between observed Hmax and Hmax generated by fitting the distribution is computed.

D; = maximum|CPDF (Hpax) — F; (Hyax)| — (20)

where D;j is the D-statistic, CPDF(Hmax) is the observed CPDF of Hmax, and Fj(Hmax) is
the CPDF of Hmax estimated by fitting distribution of type j to observed Hmax.

The null hypothesis is observed Hmax belongs to distribution j. D-statistic is
compared with critical value taken from Masey (1952) for large sample sizes at 0.05
significance level:

Deritical = 1-36/\/ﬁ - (21)

where N is the number of observations. The null hypothesis is rejected if the D-statistic
exceeds Dcritical. Table 2 reveals the results of KS-test goodness of fit applied to Hmax.

Table 2: KS-test for Rayleigh, Weibull, compared to critical D value

. Critical Value for KS-test at
Distribution N
0.05 significance level
. . No. of . ,
In-situ Site samples Rayleigh Weibull D yitica = 1.36//N

LT1 20519 0.25099 0.12136 0.0095
LT2 24081 0.09234 0.05749 0.0088
LT3 16510 0.13344 0.05350 0.0106
LT4 25380 0.29055 0.11387 0.0085
LT5 23634 0.13492 0.11708 0.0088
ST1 1438 0.44565 0.12612 0.0359
ST2 1440 0.43220 0.14057 0.0358
ST3 4591 0.22664 0.18595 0.0201
ST4 1183 0.36388 0.33702 0.0395
ST5 2060 0.28443 0.13904 0.0300
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Both Rayleigh and Weibull distribution D-statistics exceed critical D value.
Therefore, distribution of Hmax for each in-situ site cannot be described by either
Weibull or Rayleigh distribution. As the underlying distribution of Hmax is unknown, the
return period is determined based on frequency analysis of observed Hmax itself
(Equations 22). Table 3 (4) summarizes the statistics of Hmax (Hs) for each in-situ
observation site. Rows with shaded columns indicate sites with too few observations
to calculate return period.

Frequency of Exceeding Wave Height, H is F(H)
= No.of Times Wave Heights h,exceeds H in the Entire Record
—(22a)

Probability of Exceeding H,P(H)
_ F(H)
~ No.of Observations in the Entire Record

— (22b)

1
Return Period of Exceeding H,T(H) = POD (22¢)

Table 3: Significant Wave Height Statistics of All In-Situ Observation Sites

Significant Wave Height (m)
14-17 Day
No. Station Mode Median 99" . Maximum Retgrn
Name Percentile Period
Value
1 LT1 0.20-10.40 0.24 1.44 2.36 1.97
2 LT2 0.20-10.40 0.24 0.80 3.43 0.99
3 LT3 0.00-10.20 0.20 0.70 1.73 0.88
4 LT4 0.00-10.20 0.09 0.58 2.32 0.85
5 LT5 0.40-0.60 0.66 2.42 3.75 2.85
6 ST1 0.80-1.00 0.96 1.34 1.46
7 ST2 0.80-1.00 0.85 1.20 1.26
8 ST3 1.60-1.80 1.62 2.50 2.63
9 ST4 1.40-1.60 1.46 1.71 1.84
10 ST5 0.40-10.60 0.50 0.94 1.05
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Table 4: Maximum Wave Height Statistics of All In-Situ Observation Sites

Maximum Wave Height (m)
. 14-17 Day
No. Station Mode Median 99" Percentile | Maximum Return
Name .
Period Value
1 LT1 0.20-0.40 0.30 1.83 2.99 2.50
2 LT2 0.20-0.40 0.30 1.01 4.35 1.26
3 LT3 0.00 -0.20 0.25 0.89 2.19 1.11
4 LT4 0.00-0.20 0.12 0.73 2.95 1.08
5 LTS5 0.60-0.80 0.94 3.59 5.86 4.30
6 ST1 1.40-1.60 1.51 2.27 2.38
7 ST2 1.20-1.40 1.31 2.23 2.23
8 ST3 2.40-2.60 2.49 3.90 4.32
9 ST4 2.20-2.40 2.27 3.06 3.16
10 ST5 0.60-0.80 0.75 1.54 1.66
Tl
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Figure 3a. Observed return period curve for LT1
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Figure 3b. Observed return period curve for LT2
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2.2  Correlation Analysis with Respect to Hmax

The estimation of Hmax is the primary goal of this study. Correlation analysis is
performed to determine the most accurate predictor of Hmax. The coefficient of
determination or R? is used to evaluate the goodness of each predictor. In this study,
the predictors considered are as follows: number of waves (N), wind speed (m/s), and
Hs.

The number of waves is defined as duration of wave of observation divided by
the mean wave period, Tm given in Equation 22:

Duration of Wave Observation (s) (22)

Number of waves, N = -
Mean Wave Period,Tm

Previous studies reported that Hmax is a function of Hsand N (Feng et al., 2014,
Goda, 2000, and Forristall, 1978). The Rayleigh distribution has been reported to give
a good approximation of the distribution of individual wave heights (Goda, 2000). Most
probable value, arithmetic mean value, and probability of exceeding y, of Hmax are
given in Equations 23, 24, and 25. They are based on the Rayleigh distribution.

(P22 0ge = 0.706VINN - (23)

Hmax 0.5772
( Hy Ymean = 0.706 [VlnN + > lnN] - (24)

Hmax _ N
(H_S)” = 0.706 ’11’1 lln T l — (25)
(1-p)

Fetch is an area over the ocean where wind blows in a constant direction.
Stronger winds mean larger fetch which generates higher waves. In this study, we
attempt to study the correlation between wind speed and Hmax. It is assumed that local
winds measured in-situ approximates wind speeds over a larger area of the ocean.

The coefficient of determination, R> measures the strength of linear relationship
between two variables. R? of 1 shows perfect linear fit between the variables while R?
of zero shows that they are not linearly correlated. R? score of less than 0.5 shows
that the mean value of y is a better predictor than predictor x. R? score of 0.5 shows
that predictor x is just as good as the mean value of y in predicting y. R? is depicted in
Equation 26.

-9
RE=1-505p @

y — Observed value (predictand)
y — Linear Regression (x) where x is the predictor
y — mean value of y
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Scatterplot analysis between Hmax against wind speed (Ws) is in Figures 4. The
R? score between Hmax and Ws is summarized in Table 5. Based on Figures 4 and
Table 5, Wsis a poor predictor of Hmax with R? score less than 0.50. Meanwhile,
scatterplot analysis between Hmaxand N are shown in Figure 5. R? score between Hmax
and N is depicted in Table 6. Analysis revealed in-situ observations in ST1, ST2, ST3,
ST4, and ST5 during strong wind and rough seas warnings issued by MET Malaysia,
have high R? score exceeding 0.5. Refer to Table 7 / Figure 6 for warning category
and dates. However, LT1, LT2, LT3, LT4, and LT5 site observations over long-term
for all seasons revealed low R? score. This may indicate N is a parameter useful for
estimating Hmax only during strong wind and rough seas. Analysis between Hmax and
Hs (Figure 7), and R? score (Table 8) indicated Hs has strong linear relationship to
Hmax. Nearly all in-situ observations exceed 0.95 R? except ST3 (0.81) and ST5 (0.72).
As a result, this study will mainly focus on using Hsto estimate Hmax.

Table 5. R? Score between Hmax and Wind Speed in decreasing R? order

In-Situ Wave Observation Site R? Score
ST1 0.45
ST4 0.28
ST2 0.27
LTS5 0.19
ST5 0.11
ST3 0.05

Table 6. R?Score between Hmax and Number of Waves (N)

In-Situ Wave Observation Site R2 Score
LT1 0.07
LT2 0.01
LT3 0.17
LT4 0.26
LT5 0.15
ST1 0.53
ST2 0.54
ST3 0.81
ST4 0.91
ST5 0.72

15
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Table 7a. Site, location, date, and selected warnings (MET Malaysia)

No.

Site

Location

Date of issue
corresponding

to the data

Category of
Warning

Location of Warning
(Applicable to or

close to Site)

ST1

ST2

ST3

South China
(off

coast of

Sea

Terengganu)

2022-06-29

Northeastern part of
Condore, northern part
of Reef North, Layang-

Layang, Palawan

2020-06-29

Thunderstorms

Waters  off

Kedah, Eastern Johore,

Perlis,

Pahang, Eastern

Sabah, and Lahad Datu

2022-02-23

Southeastern part of
Samui, Tioman,
Condore, northern part
Reef

North, Layang-Layang

of Bunguran,

2022-02-28

Condore, Reef North,
Layang-Layang

2022-04-03

Condore, northeastern
and southwestern parts
of Reef North, Layang-
Layang

2022-04-08

Western part  of

Condore, Bunguran,
eastern part of Reef
North, Reef South,
Layang-Layang,

Labuan, Palawan

2022-04-27

Thunderstorm

Waters off Selangor,
Johor, Pahang,

Sarawak, Sabah
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Table 7a. Site, location, date, and selected warnings (MET Malaysia)

Date of issue

Location of Warning

) ) ] Category of )
No. | Site | Location | corresponding ) (Applicable to or close to
Warning )
to the data Site)
South Waters off Sarawak,
2022-04-08 2
China Sea western Sabah, and Labuan
4 | ST4 o
(off Miri, Waters off Selangor, Johor,
2022-04-27 | Thunderstorms
Sarawak) Pahang, Sarawak, Sabah
Eastern part of Phuket,
South Straits of Malacca,
China Sea northwestern part of Samui,
5 | ST5 2022-06-28 | Thunderstorms
(off southeastern part of
Labuan) Bunguran, Reef North,

Labuan, Palawan, Sulu

Table 7b. Category of Warning, Wind speeds, and Wave heights (MET Malaysia)

Category of Warning

Wind speeds (kmph)

Wave heights (m)

3 Exceeding 60 Exceeding 4.5
2 50 - 60 3.5-45

1 40-50 25-35
Thunderstorms for Shipping Up to 50 Up to 3.5m

CONDORE®

.

LAYANG-LAYANG

.

ISIMYINS

Figure 6. Location of warnings under the responsibility of MET Malaysia.
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Table 8. R2 Score between Hmax and Hs

In-Situ Wave Observation Site R2 Score
LT1 1.00
LT2 1.00
LT3 1.00
LT4 1.00
LT5 0.96
ST1 0.81
ST2 0.78
ST3 0.96
ST4 0.95
ST5 0.95
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Figure 7a. Scatterplots, Hmax VS. Hs, Site observations LT1, LT2, and LT3 (top to

bottom).
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Figures 7c. Scatterplots, Hmax VS. Hs, site observations ST3, ST4, and ST5 (top to
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3.0 Methodology
3.1 Ratio of Hmaxto Hs
Hmax IS non-deterministic. Estimations of Hmax are normally within 1.6 to 2.0 of Hs.

Hpax = (1.6~2.0)H, — (27)

Measurements of Hmax to Hs ratio are performed for each site and the results
are depicted in Table 9 and Figures 8. Using long-term wave observations, sites in
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shallow waters (depths < 20m) and close to the shore (LT1, LT2, LT3, and LT4) have
ratios between 1.26 — 1.27. On the other hand, long-term wave observations for
deeper depths (450m) in the open seas, LTS5 have ratio of 1.44. However, for episodes
of strong winds and rough seas (Tables 7) the ratios tend to 1.52 — 1.58 (ST1, ST2,
ST3, ST4, and ST5). Histogram analysis (Figures 9) reveals that sites at deeper
waters (LT5, ST1, ST2, ST3, and ST5) have ratios between 1.40-1.60, while sites in
shallower waters (depth <20m) such as LT1, LT2, LT3, and LT4 have ratios 1.20 —
1.40.

Figure 10 shows the CPDF of Hmax/Hs ratio. The safest ratio is suggested to be
1.8, with zero (0) probability of underestimating the Hmax. However, ratio of 1.50
showed least overall error in estimating Hmax, but it may underestimate Hmax in rough
seas and strong wind conditions. This is demonstrated by the average ratio for ST1,
ST2, ST3, ST4 and ST5 exceeding 1.50 during strong winds and rough seas condition.

Table 9. Average Ratio of Hmax to Hs

In-Situ Site Ratio of Maximum Wave Height (Hmax) to Significant Wave Height
(Hs)
LT1 1.27
LT2 1.27
LT3 1.27
LT4 1.26
LT5 1.44
ST1 1.54
ST2 1.54
ST3 1.53
ST4 1.58
ST5 1.52
LTl
1.5 Average Ratio = 1.27
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Figure 8a. Ratio Hmax to Hs vS. Hs in LT1.
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Figure 8d. Ratio Hmax to Hs vs. Hs in LT4.
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3.2  Methods of Estimating Hmax

3.2.1 Rayleigh Distribution

Individual wave heights with sufficiently narrow spectrum could be approximated by
the Rayleigh Distribution. Although real-life individual waves have spectral spread
which deviates from this assumption, it has been reported (Goda, 2000) that the
Rayleigh Distribution still provides a good estimation of the distribution of individual
wave heights. This study aims to compare the observed Hmax with the Hmax calculated
using the Rayleigh Distribution. The equations for calculating Hmax have already been
described in Section 2.2, Equations 23, 24, and 25. The maximum wave height in
this study is calculated at probability y = 0.01 (refer to Equation 25 in Section 2.2).

3.2.2 Linear Regression
Section 2.2, Table 8 reported that the Hs has strong linear correlation with respect to
the Hmax. Therefore, it is reasonable to consider linear regression as a potential method
for accurate estimation of Hmax. The equation for linear regression is given in Equation
28:

y =mx + c —(28)
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where y is the predictand which is the Hmax, X is the predictor which is Hs, m is a
coefficient of gradient, and c is the coefficient of intersect. The optimal parameters are
found by minimizing the least squared error between true values of y with predicted
values by regression (). In our study, all forms of regression coefficients are fitted by
the method of iteratively reweighted least squares.

3.2.3 Polynomial Regression

A weakness of linear regression is that it only models’ linear relationships between
predictor (x) and predictand (y). In other words, linear regression is not suitable for
non-linear relationships between x and y. This limitation is depicted in Figure 11. In
this example, we note that linear regression is incapable of correctly plotting the best-
fit curve for simple quadratic relationship, y = x? even though the R? score is high.

To model non-linear relationships, the method of polynomial regression can be
used. In this method, predictand y is modelled as a function to the nth degree
polynomial of predictor x. There is a risk of overfitting if the degree (n) is too high. In
this study, we evaluate polynomial regression to the power of 2 or n = 2. The
polynomial regression equation is given in Equation 29.

y = Box? + 1x + o — (29)

where y is the predictand (in this study, Hmax), X is the predictor (Hs in our study).
y=X2

160

140 .
120 .
| .
80 .
y=12x-22."
40
20

R 4 6 8 10 12

-40

Figure 11. Linear Regression best-fit line against non-linear (quadratic) relationship.

3.2.4 Power Regression

Although polynomial regression (Section 3.2.3) can fit non-linear relationships
between predictand y and predictor X, it uses more coefficients (3 coefficients) to
explain the relationship between 2 variables (y and x). The relationship modelled by
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polynomial regression (Equation 29) is also difficult to explain because it is not one-
on-one, but one to two, that is y with respect to x?, x!, and x°. An alternative to
polynomial regression is power regression.

Power regression can fit non-linear relationships as well. In addition, power
regression uses only 2 coefficients (a and b) to explain the relationship between 2
variables (x and y). Power regression is also easier to explain because it models y to
X in a one-on-one relationship. In a nutshell, power regression models y as a function
of x raised to the power of b (Equation 30):

y = ax? —(30)

3.2.5 Multiple Linear Regression (MLR)
MLR attempts to model the predictand y by calculating linear relationships between
sety and set {x1, X2, X3, ..., XN} as described in Equation 31:

y = bO + b1x1 + bzxz + .- bnxn - (31)

MLR is an extension of linear regression to multiple predictands. This method
assumes that predictand y is linearly dependent on predictor set X = {x1, X2, ..., XN}.
Additionally, the residuals are assumed to follow a normal distribution. The advantage
of MLR is that the relationship between predictand and predictors are easy to explain.

In this study, for in-situ observations labelled LT1, LT2, LT3, LT4, ST1, ST2,
ST3, ST4, and ST5, the predictors are (Hs), zero-crossing wave period (Tz), and peak
wave period (Tp). Meanwhile, for in-situ observation labelled LT5 the predictors are
(Hs), period of the highest wave (Thmax), estimated mean wave period in respect to
fundamental zeroth moment and first moment, m1 (TmO01), estimated mean wave
period in respect to fundamental zeroth moment and first moment, m2 (Tm02),
estimated mean wave period in respect to fundamental mO and first moment m1l in
lower frequency band (TmO2a), and estimated mean wave period in respect to
fundamental mO and first moment m1 in mid-frequency band (TmO02b).

3.2.6 Deep Learning

Regression-based techniques assume that the relationship between Hs to Hmax obeys
a pre-defined relationship. However, this may not be the case. Artificial Neural
Networks (ANN) can estimate predictands without any underlying assumption of the
relationship. ANNs have the advantage of being able to model non-linear relationship
between predictors and predictands. It was reported that the (Hs) relationship with
average zero-cross wave period (Tz) and peak-spectral period (Tp) was more
accurately modelled using ANNs while Hs relationship to maximum spectral energy
density (Emax) and (Hmax) is equally well modelled between regression and ANNs
(Agrawal and Deo, 2004). This study compares the performance of ANNs with
regression methods in estimating (Hmax) using (Hs). ANNs have the disadvantage of
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being difficult to explain the mathematical relationship in a concise and precise manner
as they consist of several layers of equations. In addition, ANNs also have the
disadvantage of consuming more computational power than regression techniques
during the training phase.

The predictor, (Hs) and predictand, (Hmax) are scaled to values of O to 1 before
ingested into the ANN. This study uses multilayer feedforward Neural Network
consisting of 3 layers that contain 300, 400, and 1 node respectively, with learning rate
of 0.00001. The Rectified Linear Unit or ReLU activation function was used in our
study. The ReLU activation function avoids the vanishing gradient problem associated
with sigmoid and tanh activation functions. Meanwhile, the loss function of this study
is the mean absolute error (MAE) with Nadam optimizer used to minimize the MAE.
The Nadam optimizer incorporates a momentum component to improve ANN
convergence speed and quality. Verification of Nadam optimizer reports smaller Mean
Square Error (MSE) than other common optimizers (Dozat, 2016).

4.0 Results and Analysis
4.1  Scatterplot and Boxplot Analysis
The algorithms mentioned in Section 3.2 namely Rayleigh distribution, linear
regression, polynomial regression, power regression, multiple linear regression and
neural networks are used to estimate the Hmax based on Hs and wave period. The
estimated Hmax is then plotted against the observed Hmax. Figures 12a-j depict
scatterplots for LT1, LT2, LT3, LT4, LT5, ST1, ST2, ST3, ST4, and ST5 respectively.
R? score and mean absolute error (MAE) were used to quantify the goodness of fit
between estimated to observed maximum wave height.

Long term wave observations gathered for all months of the year at LT1, LT2,
LT3, LT4 and LTS5 indicate that the Rayleigh mode and mean tends to overestimate
Hmax. The overestimation is especially acute for Rayleigh Hmax at 0.01% probability.
Linear regression, polynomial regression, power regression, multiple linear
regression, and neural network (Hs) produce the most accurate estimation of Hmax
compared to observation. Surprisingly neural networks with (Hs), zero-crossing wave
period (Tz), and peak wave period (Tp) have lower skill compared to neural networks
using only (Hs). Estimating (Hmax) by multiplying (Hs) with constant 1.27 for LT1, LT2,
LT3, and LT4 and constant 1.50 for LT5 worked almost as well as regression and
neural network method.

Short-term wave observations in strong winds and rough seas recorded in ST1,
ST2, ST3, ST4, and ST5 showed that Rayleigh mode and mean underestimates Hmax.
This contrasts with long term observations recorded in LT1, LT2, LT3, LT4, and LT5.
Meanwhile, Rayleigh Hmax at 0.01% probability slightly overestimates Hmax.
Regression showed negligible difference in skill compared to neural networks (Hs).
Three (3) parameter neural network (Hs, Tz, Tp) showed worse skill compared to one
(1) parameter neural network (Hs). Regression techniques and single parameter
neural network (Hs) performed equally well with a high R? score. Estimating (Hmax) by
multiplying (Hs) with 1.50 showed nearly as good R? and MAE skill as regression and
neural networks.
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Figure 12a. Scatterplot of Estimated Hmax (y-axis) vs.Observed Hmax (x-axis) for LT1.
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Figure 12b. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (X-axis) for LT2.
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Figure 12c. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for LT3.
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Figure 12d. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (X-axis) for LT4.
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Figure 12e. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for LT5.
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Figure 12f. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for ST1.
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Figure 12g. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for ST2.
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Figure 12h. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for ST3.
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Figure 12i. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (X-axis) for ST4.
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Figure 12j. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (X-axis) for ST5.

Analysis of the distribution for each in-situ observation site shows that
multiplication of Hs by 1.27 for sites at shallow water (LT1, LT2, LT3, and LT4) and
1.50 for sites at deep water (LT5), or strong winds and rough seas (ST1, ST2, ST3,
ST4, and ST5) is nearly as good as regression analysis and neural network prediction.
Figures 13a to 13; depict box plots for each site. MAE refers to mean absolute error
while std MAE is the standard deviation of the MAE.
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Figure 13a. Boxplot Analysis for LT1
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Figure 13b. Boxplot Analysis for LT2
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Figure 13d. Boxplot Analysis for LT4
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LT5 Estimated - Observed Hmax (m) , 23640 Hourly Data Points
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Figure 13f. Boxplot Analysis for ST1
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Figure 13g. Boxplot Analysis for ST2
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Figure 13h.

Boxplot Analysis for ST3
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Figure 13i. Boxplot Analysis for ST4
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4.2 Regression Analysis

The regression equation between Hmax as predictand with respect to its predictors are
analysed. Regression equations give insight into the relationship between predictand
and each predictor. The coefficient of regression describes the rate of change of
predictand with respect to each predictor.

Table 10. Regression Equation of H,,,, at Each In-Situ Observation Sites.

LT1,LT2,LT3,and LT4

Linear Regression Hp.x = 1.27 X Hg

Polynomial Regression Hpax = 0.00 X H2 + 1.27 X Hg + 0.00
Power Regression Hypax = 1.27 x H¥%°

Multiple Linear Regression Hpax = 1.27 X Hg + 0.00 X T, — 0.00 X T}, — 0.00

LTS5
Linear Regression Hpy.x = 1.48 X H; — 0.02
Polynomial Regression Hpax = 0.02 X H2 + 1.44 X H; — 0.01
Power Regression Hpax = 1.45 x H'02

Multiple Linear Regression Hpax = 1.46 X Hg — 0.00 X Thmax — 0.06 X Tm01
+ 0.05 X Tm02 — 0.00 X Tm02a
+ 0.05 X Tm02b — 0.00 X T, — 0.16

ST1
Linear Regression Hpax = 1.57 X Hg — 0.03
Polynomial Regression Hpmax = 0.55 X Hy? + 0.39 X H, + 0.59
Power Regression Hpax = 1.54 x H"0%

Multiple Linear Regression Hpax = 1.62 X Hg — 0.05 X T, + 0.01 X T, + 0.03

ST?2
Linear Regression Hpax = 1.63 X Hg — 0.09
Polynomial Regression Hpmax = 0.60 X Hy? + 0.50 X Hy + 0.43
Power Regression Hpax = 1.55 x H,'0°

Multiple Linear Regression Hpax = 1.64 X H; — 0.01 X T, + 0.02 X T), — 0.14

52



Table 10. (Continued)

ST3

Linear Regression

Hppax = 1.54 X Hy — 0.00

Polynomial Regression

Hyx = —0.08 X Hy® + 1.74 x Hy — 0.09

Power Regression

Hpax = 1.55 x H%%?

Multiple Linear Regression

Hmay = 1.47 X Hg + 0.05 X T, — 0.00 X T,, — 0.12

ST4

Linear Regression

Hppax = 1.62 X Hg — 0.03

Polynomial Regression

Hyax = 0.06 X Hi* + 1.52 x H, — 0.01

Power Regression

H.x = 1.58 x H,10*

Multiple Linear Regression

Humax = 1.88 X Hg — 0.08 X T, — 0.02 X T, + 0.22

ST5

Linear Regression

Hpax = 1.63 X Hg — 0.05

Polynomial Regression

Hpax = 0.14 X HZ + 1.47 x Hy — 0.01

Power Regression

Hoyax = 1.59 x HY7

Multiple Linear Regression

Hpax = 1.56 X Hg + 0.06 X T, — 0.00 X T;, — 0.17

Legend
Variable Name in Regression Description of Variable Name
Equation
Hppax Maximum Wave Height (m)

H, Significant Wave Height (m)

T, Zero-crossing wave period (S)

T, Peak wave period (S)
Thmax Period of the highest wave (s)
Tmo01 Estimated mean wave period in respect to

fundamental zeroth moment and first moment,
ml

TmO02

Estimated mean wave period in respect to
fundamental zeroth moment and first moment,

m2
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Table 10. indicates that long-term wave observations near the shore, and in
shallow waters such as LT1, LT2, LT3, and LT4 have the same regression equation.
For these sites, the Hmax is equal to 1.27 times the Hs. On the other hand, the LT5 site
is in the open seas and in deeper waters. LT5 has long term records too. Compared
to the LT1-LT4 sites in shallow waters, the LT5 site has a higher ratio of Hmax to Hs of
approximately 1.50. For both LT1-LT4 and LT5 long term records, the regression
coefficient of wave periods is negligible in comparison with the Hs. LT1-LT4 sites
showed zero regression coefficient (to 2 decimal places) for zero-crossing wave
period, and peak wave period with respect to Hs. Meanwhile, LT5 mean period TmO1,
Tm02, and TmO02b showed regression coefficients of -0.06, 0.05, and 0.05
respectively. They are 24.3, and 29.2 times smaller than the regression coefficient for
Hs. This indicates that the wave periods do not influence the Hmax.

Meanwhile, sites with short-term wave observations (at most 5 days) during
strong winds and rough seas, such as ST1, ST2, ST3, ST4 and ST5 have a higher
ratio of Hmax t0 Hs closer to 1.60. Nonetheless, consistent with long-term wave
observations, the zero-crossing wave period (Tz) and peak wave period (Tp) does not
influence the (Hmax). This is indicated by the very small regression coefficients of Tp
and T.

4.3 K-Fold Stratified Cross Validation

The methods outlined in this study are used to estimate the Hmax. Subsequently, the
estimated Hmax is compared against the observed Hmax. A widely used method of
comparing an estimate with the ground truth is by cross-validation.

It is not possible to use the same data to train the model and validate the model.
This will cause overfitting whereby the model is specifically trained only for that
dataset. Even noise and other errors will be modelled. Although the overfitted model
may have very low error, it is only with respect to the dataset it has trained with. When
that model is deployed on datasets it has not seen, such as in real-time operation, that
model will fail.

To prevent this issue, the model needs to be validated or compared against
dataset excluded from training. In this study, the entire dataset is first shuffled
randomly. Random shuffling increases the likelihood that each subset of dataset
population has approximately the same distribution as other subsets of the population.
This is also known as stratification.

Then, the dataset is split into k = 10 subsets. The model is trained using k-1
subsets and validated against the remaining subset. Subsequently, the error, E is
calculated. This procedure is repeated until each k subset has been part of the
validation dataset. As a result of stratification by random shuffling, each k subset
population density should represent the population dataset. The 10-fold stratified
cross-validation is applied in this study. Figure 14. depicts the implementation of 10-
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fold cross-validation used in this study. Equation (32) shows the average mean
absolute error after 10-fold cross-validation, where i refers to the i-th subset of the
data, which is divided into 10 subsets.

10
1
MAE 1055 validated = EZIForecast — Observed|; — (32)
i=1

Validation Dataset No. 1

Training Fold No. 1 ﬁ'k\’;
| Training Dat;set No.1
Training Fold No. 2 ﬁ'“‘\‘;
Validation Dataset No. 10
Training Fold No. 10 I;*;

'r
Training Dataset No. 10

Figure 14. 10-fold cross validation. Dataset of each station are randomly shuffled and

splitinto 10 subsets. The model is trained 10 times using 9 of the subsets and validated

against the remaining 1 subset.

Based on 10-fold cross validation, the MAE is calculated for each method of
estimating Hmax, that is Hs times 1.50, Hs times 1.27, multiple regression, linear
regression, polynomial regression, power regression, neural network with respect to
Hs, and neural network with respect to both Hs and wave period. The MAE for each
method at each in-situ observation site is tabulated in Figure 15.

Forthe LT1,LT2, LT3, and LT4 stations that have long-term wave observations
and are in shallow waters, the method of regression and method of neural network
with respect to just Hs has the least MAE. The simplest method of estimating Hmax for
these stations is by multiplying Hs by 1.27.

On the other hand, the worst method of estimating Hmax for stations with short-
term wave observations at conditions of strong winds and rough seas, is multiplication
by 1.27. This is because the ratio between Hmax and Hsig is observed to be closer to
1.50 — 1.60 for these stations (ST1, ST2, ST3, ST4, and ST5). Method of multiple
regression, linear regression, polynomial regression, and neural network (with respect
to Hs) are equally the best methods of Hmax estimation.
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Mean Absolute Error x 1000
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Figure 15. Heatmap indicating Mean Absolute Error x 1000 for each method of
estimating Hmax (vertical axis) with respect to in-situ observation site at the horizontal

axis.

5. Conclusion

Ten (10) wave observation sites were used in this study. Four were in shallow
waters with depth less than 20m, (LT1, LT2, LT3, and LT4) while the remaining were
in deeper waters (depth at least 66m). Four observation sites had long-term data
spanning at 10 years (LT1, LT2, LT3, and LT4), one observation site had long-term
data spanning 5 years (LT5), and remaining observation site had short-term
observations of at most 5 days (ST1, ST2, ST3, ST4, and ST5) during strong winds
and rough seas conditions, based on warnings issued by MET Malaysia (refer to Table
7, Section 2.2).

The ratio of Hmax to Hs in shallow waters was 1.27 while the ratio was 1.50
otherwise. On the other hand, the ratio increased to between 1.50-1.60 during strong
winds and rough seas conditions. Calculations of Hmax by Rayleigh mode, mean, and
probability y = 0.01 tended to overestimate observed Hmax for long-term wave
observations. On the contrary, Hmax calculated by Rayleigh mode, and mean tended
to underestimate Hmax observed during strong winds and rough seas conditions.
Rayleigh Hmax at probability y = 0.01 tends to slightly overestimate observed Hmax
during strong winds and rough seas condition.

Observed Hmax is poorly correlated to wind speed, wave periods and number of
waves. On the other hand, observed Hmax is highly correlated with Hs observation.
Estimations of Hmax by linear, polynomial, power, and artificial neural networks with Hs
as predictor showed less Mean Absolute Error (MAE) than multiplying Hmax by a
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constant. Nevertheless, the simplest rule of thumb for estimating Hmax is multiplication
of Hs by 1.27 in shallow waters near the shore (LT1, LT2, LT3, and LT4), multiplying
Hs by 1.50 in deep waters under normal sea conditions (LT5), and multiplying Hs by
between 1.50-1.60 under strong winds and rough sea conditions (warning issued by
MET Malaysia) as shown in ST1, ST2, ST3, ST4 and ST5 observation sites. Ratio of
Hmax to Hs may increase when wave distribution is shifted towards the tails (increased
kurtosis), during rough seas and strong wind conditions. Kurtosis may be explored to
increase accuracy of Hmax measurement in the future.

More observations are needed for future work. Longer term observations are
needed to improve statistical significance of return period analysis. The underlying
distribution of Hmax must be determined empirically using good quality wave
observations to accurately determine return period of Hmax. Knowing the underlying
distribution of wave observations is crucial in calculating more accurate Hmax.
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