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Estimation of Maximum Wave Height at In-situ Wave Observation  

Sites in Malaysia 

 

Yip Weng Sang and Nursalleh K. Chang 

 

Abstract 

 

The relationship between wave parameters is studied to find the most suitable method of 

estimating maximum wave height. Long-term in-situ wave observations in all seasons, and 

short-term in-situ wave observations during periods that coincides with strong winds and 

rough seas warnings issued by MET Malaysia, are analyzed. Correlation analysis of 

observations revealed that significant wave height observations are highly correlated with 

observed maximum wave height. On the other hand, the number of waves and wind speed 

is generally poorly correlated with observed maximum wave height. Kolmogorov-Smirnov 

significance test indicates that observed maximum wave height distribution does not follow 

either Rayleigh or Weibull distribution, at the 0.05 significance level. Estimation of maximum 

wave height using Rayleigh Distribution, regression, and neural networks are studied. The 

Rayleigh Distribution severely overestimates maximum wave height. On the contrary, 

regression and neural networks showed equal skill, and can estimate maximum wave height 

better. On average, the ratio of maximum wave height to significant wave height measured 

in shallow waters, where the depth is less than 20m, is 1.27 based on long-term, all-season 

observations. In deeper waters of depth 450m, the ratio is 1.50. At periods coinciding with 

rough seas and strong winds corresponding to thunderstorm warnings and marine warnings 

issued by MET Malaysia, the ratio increased to between 1.50 – 1.60. The accuracy of 

maximum wave height estimation by simply multiplying significant wave height by fixed 1.27 

(depth less than 20m) or 1.50 otherwise, showed comparable mean absolute error, with 

regression or neural network. 
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1. Introduction 

 

Maximum wave height (Hmax) estimation is important in the safety design of oil 

platforms, ships, and other maritime structures. Hmax is not a deterministic quantity, 

but a statistical quantity. Statistical distributions have been used to derive Hmax.  

 Longuet-Higgins (1952) defined wave amplitude (a) as ½ the distance between 

the highest point of the wave to the lowest point of the previous wave. Wave trains 

with narrow frequency bandwidth that can be decomposed into numerous smaller, 

independent components are modelled. Based on this model and assumptions, the 

expected Hmax is:  

 

𝐸(𝐻𝑚𝑎𝑥) = 0.70621 × 𝐻𝑠 × [√(𝑙𝑜𝑔𝑁) +
𝛾

2√𝑙𝑜𝑔𝑁
] – (1) 

 

where Hmax is the maximum wave amplitude, Hs is the significant wave height, N is 

number of waves equals to period of observation (Td) divided by mean wave period 

(Tmean). Meanwhile, the most probable Hmax is:  

 

𝜇(𝐻max) = 0.70621 × √𝑙𝑜𝑔𝑁 – (2) 

 

This distribution is colloquially known as Rayleigh distribution, after Lord 

Rayleigh who modelled acoustic amplitudes from many random sound sources. 

However, Forristal (1978) reported that the Rayleigh distribution tends to overestimate 

height of the highest wave. Based on one hundred sixteen (116) hours of data in the 

Gulf of Mexico during hurricanes, Forristal (1978) fitted an empirical Weibull 

distribution:  

 

𝐸(𝑥) = exp (−
𝑥𝛼

β
) – (3) 

𝑥 =
𝐻𝑜

(𝑚𝑜)1/2
 – (3a) 

 

where Ho is wave height, mo is mean-square of the wave profile, E(x) is the probability 

of wave height more than or equals to x. Coefficients 𝛼, 𝛽 are calculated by linear-

straight-line fitting. Based on Equation 3, the Hmax is:  

 

𝐸(𝐻max) = (𝛽𝜃𝑜)
1

𝛼 (1 +
𝛾

𝛼𝜃0
) – (4) 

 

where 𝐸(𝑥𝑚𝑎𝑥)is the expected Hmax, 𝜃𝑜 = 𝑙𝑛𝑁 where N is number of waves, 𝛾 = 0.5772 

(Euler’s constant). Forristal (1978) fitted the Empirical Weibull distribution (Equation 4) 

on 116 hours of wave data in the Guld of Mexico during hurricanes. A close fit was 

reported for the proposed Empirical Weibull distribution, and it performed better than 

the Rayleigh distribution. Forristal (1978) defined wave height as distance between 

trough and next crest.  
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 Krogstad (1985) analyzed 3-hourly in-situ, wave data observations in the 

Norwegian Sea with records between 4-6 years. It was reported that the Rayleigh 

distribution failed to represent upper-tail wave heights, although it gave a reasonably 

well estimation of overall wave height. Wave parameters are estimated using zero up-

crossing analysis. Krogstad (1985) attempted to fit the two-parameter Weibull 

distribution and observed that is suitable for wave height estimation in the upper tail of 

the distribution. The two-parameter Weibull distribution suggested is:  

 

𝐹(𝑋) = [1 − exp (−
𝑥𝑎

𝛽
)]

𝑁𝑜

- (5) 

 

Where X is Hmax normalized by 1/4 significant wave height, F(X) is probability of X not 

exceeding x; 𝛼, 𝛽, 𝑁𝑜 are constants solved by linear fitting, and N is number of waves 

that is duration of record divided by peak wave period. The expected ratio of Hmax to 

Hs is:  

𝐸 (
𝐻max

𝐻𝑠
) = 0.25(𝛽𝑙𝑜𝑔𝑁)

1

𝛼 [1 +
0.5722

𝛼𝑙𝑜𝑔𝑁
] – (6) 

 

 Muraleedharan (2007) studied wave data in the eastern Arabian seas during 

rough monsoon conditions for both deep and shallow depths. Zero-crossing wave 

analysis was used to compute Hs. 33,000 data over a period of 10 years were used. 

A modified Weibull distribution was proposed to estimate Hmax and Hs. The modified 

distribution was reportedly more effective in simulating Hmax distribution and other 

wave height parameters, compared to the standard Weibull and Rayleigh distributions. 

The equations proposed by Muraleedharan (2007) are detailed below:  

 

𝑃(ℎ) = exp (𝛼𝑏 − (
ℎ

𝑎
+ 𝛼)

𝑏
) – (7) 

 

where P(h) is probability of wave height exceeding h, 𝛼, 𝑎, 𝛽 are coefficients to be fitted 

via Maximum Likelihood Estimation. The mean Hmax is:  

 

𝐻max = 𝑎 ⋅ 𝑏−1 ⋅ Γ (
1

𝑏
) ⋅ [ 𝑛(1 − 𝛼𝑏) −

𝑛⋅(𝑛−1)

2!⋅2
1
𝑏

× (1 − 2𝛼𝑏) + ⋯+
(−1)𝑟+1

𝑛
1
𝑏

⋅ (1 − 𝑛 ⋅ 𝛼𝑏)]– 

(8) 

 

where Γ represents Gamma Function while ! is factorial. Most frequent maximum wave 

height is:  

𝐻𝑚𝑓𝑚 = 𝑎

[
 
 
 
{

𝐴±√𝐴2−4(𝐴−𝑏𝛼𝑏+𝛼𝑏+1)𝛼𝑏(𝑏−1)

2(𝐴−𝑏𝛼𝑏+𝛼𝑏+1)
}

1

𝑏

− 𝛼

]
 
 
 
 – (9) 
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where 𝐴 = 𝑛𝑏𝛼𝑏 + 𝑏𝛼𝑏 + 𝑛𝑏 − 𝛼𝑏 − 1, n is the number of waves. Meanwhile, the 

return period (Rp) for Hmax (hL) is in Equation 10, where N is the number of daily 

maximum wave heights.  

 

ℎ𝐿 = 𝑎 ⋅ [[𝛼𝑏 − ln {1 − (1 −
1

𝑅𝑝
)

1

𝑁
}]

1

𝑏

− 𝛼]  - (10) 

 

On the other hand, Vandever et al. (2008) proposed the usage of spectral width 

parameter ν to correct Hs, which is then used to calculate Hmax using Rayleigh 

distribution. Hmax is defined as maximum individual successive crest to trough 

distance.  Spectral width parameter is defined by Equation 11:  

 

𝜈 = √
𝑚𝑜𝑚2

𝑚1
2 − 1 – (11) 

 

where 𝜈 is the spectral width parameter known as the normalized radius of gyration. 

Ratio of H1/3 to mo
0.5 is plotted against ν and linearly fitted to Equation 12:  

 

𝐻1/3
′ = [𝛼 − 𝛽𝜈]√𝑚𝑜 – (12) 

 

where H’1/3 is the bandwidth corrected significant wave height. Calculations of Hmax 

using H’1/3 showed less error with respect to observations taken from in-situ stations. 

Kurtosis is a measure of how much data is in the tail or extreme end of the 

distribution. Janssen and Bidlot (2009) used kurtosis to estimate the Hmax based on 

Equation 13:  

 

< 𝐻max >= √< 𝑧 > = 𝑧�̂� +
𝛾

2
+

1

2
log [1 + 𝐶4 {2𝑧�̂�(𝑧𝑜 − 1) − 𝛾(1 − 2𝑧�̂�) −

1

2
(𝛾2 +

𝜋2

6
)}] 

– (13) 

𝑧�̂� =
1

2
𝑙𝑜𝑔𝑁 – (13a) 

𝑁 =
𝑇𝐷

𝑇𝑝
 – (13b) 

 

where < Hmax > is the expected maximum wave height, N is the number of waves, TD 

is duration of record and TP is the peak period, γ is the Euler’s constant, and C4 is 

kurtosis. Good agreement was reported between modelled and observed Hmax in 

Canadian offshore buoys from 2006-2008 for 18-minute interval observations.  

 Feng (2014) also reported that Hmax / Hs is linearly related to kurtosis as follows:  

 
𝐻𝑚𝑎𝑥

𝐻𝑠
= (0.49 ± 0.01) ∗ 𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 – (14) 
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Based on the relationship between Hmax / Hs to number of waves N, Feng (2014) 

proposed Equation 15 which is a modified Rayleigh distribution, to estimate Hmax:  

 

𝐻𝑚𝑎𝑥

𝐻𝑠
=

√𝑙𝑛𝑁

1.555
+

1.7(𝐻𝑠−1.5)

100
 – (15) 

 

It was reported that estimation of the largest waves has improved compared to 

conventional Rayleigh and Weibull distributions.  

 Zhuo and Sato (2015) analyzed two large typhoons that caused significant 

damage to concrete breakwater in Japan. Typhoon Wipha had lower wave height than 

Typhoon Man-yi but caused more damage. It was argued that Hs on its own could not 

fully account for extreme wave heights. Further analysis revealed that higher kurtosis 

tends to increase Hmax to Hs ratio which leads to more extreme waves.  Kurtosis is 

defined as  

 

𝜇4 =
1

𝜂𝑟𝑚𝑠
4 ⋅

1

𝑁
Σ𝑖=1

N (𝜂𝑖 − �̅�)4 – (16) 

 

where η is surface elevation, and ηrms is root mean square elevation, N is the number 

of waves, and �̅� is the mean surface elevation.  

 Chun and Suh (2019) proposed calculating Hmax using the peaked-ness 

parameter Qp , spectral wave period Tm-1,0, and significant wave height Hm0 measured 

by wave spectral parameters. The least-squares method was used to fit Hmax and 

derive Equation 17. Hmax estimation agrees well with in-situ observation data from the 

East Sea, Japan, and southeast coast of Korea.  

 

𝐻max = 1.65𝐻𝑚0𝑇𝑚−1,0
−0.04 (𝑄𝑝 − 1)

0.03
 – (17) 

 

 Barbariol et al. (2019) reported that Hmax is influenced by waves steepness, 

kurtosis, and minimum of the autocovariance function which is one measure of 

spectral bandwidth. The following equation 18 was proposed:  

 

�̅�𝑚𝑎𝑥,𝑁𝑎 = 2𝜎√1 − 𝜓∗(𝑙𝑛𝑁)
1

2 (1 +
𝛾

2𝑙𝑛𝑁 
) - (18) 

 

where �̅�𝑚𝑎𝑥,𝑁𝑎is the expected maximum (crest-to-trough) wave height at single point 

with N waves, 𝜎 is sea surface elevation standard deviation, 𝜓∗ is the minimum 

autocovariance function of the sea surface elevation 𝜓(𝑡), 𝛾 is the Euler-Mascheroni 

constant (0.5772). Values of estimated �̅�𝑚𝑎𝑥,𝑁𝑎have high correlation with OWS-P 

wave buoy observations in the North Pacific Ocean from June 2010 – December 2014.   

 Agrawal and Deo (2004) reported that regression and Neural Networks are 

useful tools for estimating Hmax using Hs at an offshore observation site in India with 

data over a period of 1 year at 20 minutes interval.  
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 This study aims to determine the most accurate method of determining Hmax. 

The Data Section describes the in-situ observation data used in this study. It is 

followed by statistical analysis of Hs and Hmax followed by correlation analysis of wave 

periods, wind speed, and Hs with respect to Hmax. The regression methods and neural 

network used in estimating Hmax are described next in the Methodology Section. 

Evaluation of the skill for each method in estimating Hmax is contained in the Results 

and Analysis Section. The Conclusion Section summarizes this study, the 

Acknowledgement, and References Section is the final section of this work. 
 

2.0 Data 
 

Four (4) Acoustic Doppler Current Profiler (ADCP) sensors were used in this study for 

in-situ wave observation. ADCP transmits pulses of acoustic waves, and uses Doppler 

shift to calculate sea current velocity, and measures wave height based on time taken 

to receive reflected acoustic waves. The Teledyne RDI Workhorse Sentinel ADCP 

1,200kHZ system, with NEMO wave processing unit, was used in this study. Rorbaek 

and Anderson (2000) compared wave spectrum and height measurements made by 

a 1,200kHZ ADCP with a well-maintained S4 electromagnetic current meter in the 

Danish west coast. The period of measurements was from November 1999 to January 

2000 when adverse weather conditions were observed. It was reported that overall 

statistical parameters observed by ADCP are reasonably consistent with the S4 

current meter, and the ADCP can measure higher frequency waves than S4.  

 Meanwhile, a Wavescan buoy manufactured by Fugro OCEANOR was used to 

measure wave height, period, and direction. Wave parameters are calculated based 

on Heave, Roll, and Pitch observed by accelerometers, rate gyros, and 

magnetometers installed in the Wavescan buoy. The Wavescan buoy is located at the 

sea surface but anchored to the seabed. Schematics show that sea depth at the 

Wavescan buoy is 450m. Additionally, wind speed and direction are measured using 

propeller and vertical shafts with stainless steel, precision ball bearings. Current 

velocity is measured by an acoustic doppler sensor located in the Wavescan buoy but 

always in contact with the sea. In-situ observation sites are mapped in Figure 1. 

Station name, latitude, longitude, depth, location, interval of wave observation, number 

of non-missing datapoint, and period of observation are tabulated in Table 1.  

 Each station is given generic names. LT are long-term site observations with at 

least-1-year of data. ST are shorter term site observations of at most 5-days. Site 

observations LT1 to LT4 use ADCP sensors while site observation LT5 uses 

Wavescan buoy. Site observations LT1 to LT5 are long-term (4-9 years of hourly wave 

records) while site observations ST1 to ST5 are short-term (1-5 days of minute wave 

records) wave observations made during strong winds and rough seas. Sites LT1 to 

LT4 are shallow at less than 20m depth. On the other hand, ST4 is deepest (depth 

1,550m), followed by ST5 and LT5 near 500m depth. Remaining sites ST1, ST2, and 

ST3 have sea depth between 60m to 80m. The LT1 observation site is the only station 

in the Straits of Malacca. Meanwhile, there are 4 observation sites, LT2, ST1, ST2 and 
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ST3 off the East Coast of Peninsula Malaysia in the South China Sea. Another 4 

observation sites, LT3, LT5, ST4, and ST5 are located off the shores of Kota Kinabalu 

and Miri. LT4 is the only site in the Celebes Sea.  
 

 
Figure 1. In-situ observation sites or station’s locations 

 

 The depth of LT5 (No. 5, Table 1) has been given in a schematic diagram 

documented by MET Malaysia. The depth of the remaining observation sites is 

calculated based on their latitude and longitude coordinates from GEBCO at resolution 

0.004o dataset, using minimum depth, at +/- 0.004o  box centered at site latitude, 

longitude. The data points represent the number of non-missing wave observations.  

 This study considers the following wave data of significant wave height 

thereafter referred to as Hs, maximum wave height thereafter referred to as Hmax, zero-

crossing wave period (Tz), mean wave period (Tm), and peak wave period (TP). The Hs 

is defined as the mean of the third highest waves measured, or four times the square 

root of the zeroth-order moment of the wave spectrum. It was first created by 

oceanographer Walter Munk as a statistical quantity that nearly matches visual wave 

observations. The World Meteorological Organization describes Hs as a common 

statistical description of the sea state. On the other hand, the Hmax is the highest wave 

height observed within the period. It is an important parameter in designing marine 

structures, for example vertical breakwaters. The Tz is the record length divided by the 

number of wave-up-crosses (or down-crosses), the Tm is is the period associated with 

the mean frequency of the wave spectrum, while the TP is the period associated with 

the most energetic wave at that specific point.   
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Table 1. Information about In-situ Observation Sites. Shallow Sites (depth<20m) in bold 

No. Site 
Latitude 

(oN) 

Longitude 

(oE) 

Depth 

(m) 
Location Interval 

Data 

Points 
Duration 

1 LT1 4.22475 100.53682 18 

'Dolphin', Pulau 

Mentagor, Pangkor 

(Straits of Malacca) 

Hourly 20,519 
2009 / 02 / 15 – 

2019 / 06 / 21 

2 LT2 5.91025 102.70975 19 

Bikon Jabatan Laut 

Pulau Perhentian 

(South China Sea) 

Hourly 24,081 
2009 / 03 / 06 – 

2018 / 11 / 30 

3 LT3 6.04060 116.10930 13 

Jeti Institut 

Penyelidikan Marin 

Borneo, UMS 

Kota Kinabalu, 

Sabah 

Hourly 16,510 
2009 / 03 / 27 – 

2019 / 04 /22 

4 LT4 4.25393 118.63297 14 

Seaventures 

Sipadan Resort, 

Mabul Semporna, 

Sabah (Celebes 

Sea) 

Hourly 25,380 
2009 / 03 / 31 – 

2019 / 06 / 21 

5 LT5 7.37500 113.79000 450 

Pulau Layang-

Layang (South 

China Sea) 

Hourly 23,634 
2013 / 01 / 01 – 

2017 / 09 / 28 

6 ST1 5.82903 104.15720 79 

Petronas Site 

(South China Sea) 

off Terengganu 

Minute 1,438 2022 / 06 / 29 

7 ST2 5.60917 103.90610 66 

Petronas Site 

(South China Sea) 

off Terengganu 

Minute 1,440 2020 / 06 / 29 

8 ST3 5.03019 105.20247 75 

Petronas Site 

(South China Sea) 

off Terengganu 

Minute 4,591 

2022 / 02 / 23, 

2022 / 02 / 28, 

2022 / 04 / 03, 

2022 / 04 / 08, 

2022 / 04 / 27 

9 ST4 5.93612 111.74350 1550 

Petronas Site 

(South China Sea) 

off Miri, Sarawak 

Minute 1,183 
2022 / 04 / 08, 

2022 / 04 / 27 

10 ST5 5.38509 114.22094 441 

Petronas Site 

(South China Sea) 

off Labuan 

Minute 2,060 2022 / 06 / 28 
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2.1 Statistics of Hs and Hmax 

 

Out of 10 stations in this study, in-situ observations by the LT5 site showed the highest 

Hmax. The most common (mode) Hmax is between 0.60 – 0.80m with median of 0.94m. 

The highest reported Hmax measured by the LT5 site is 5.86m. This may happen 

because LT5 is in Layang-Layang Island, in the open seas with longer period of 

observation compared to other sites also in the open seas, such as ST4. In addition, 

site observations in the South China Sea may be exposed to intense northeasterly 

winds during the winter monsoon cold surges. They also risk exposure to tropical 

storms in the western North Pacific and South China Sea.  

 Meanwhile, in-situ observations at shallower waters (depth less than 20m), and 

located closer to land, are observed to have lower Hmax and Hs. For example, 

Observations at LT1, LT2, LT3, and LT4 have the most common (mode) Hmax of 0.20 

– 0.40m, with median at most 0.30m. Figures 2. depicts the frequency histogram and 

probability density function (PDFs) of Hs and Hmax. The PDFs show that the Hmax and 

Hs are skewed the right (median>mode), especially for sites with long-term 

observations (5-10 years, they are LT1, LT2, LT3, LT4, and LT5). Right-skewed curves 

indicate potential for extreme wave heights. 

 

 
Figure 2a. Histogram of Hmax (blue) and Hsig (red) for LT1 (20,519 data points)  
 

 

 
Figure 2b. Histogram of Hmax (blue) and Hsig (red) for LT2 (24,081 data points).  
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Figure 2c. Histogram of Hmax (blue) and Hsig (red) for LT3 (16,510 data points).  

 

 

 
Figure 2d. Histogram of Hmax (blue) and Hsig (red) for LT4 (25,380 data points).  

 

 

 
Figure 2e. Histogram of Hmax (blue) and Hsig (red) for LT5 (23,634 data points).  
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 Extreme value analysis is crucial for risk assessment. It is important to know 

the highest maximum wave height that will occur after N years. Goda (2000) 

suggested that the standard method of extreme value analysis is by fitting the best 

probability distribution function to the dataset. In this study, we attempted to fit Hmax to 

Rayleigh and Weibull Distributions. Their cumulative distribution functions are:  

 

𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ𝑡 𝐶𝑃𝐷𝐹, 𝐹(𝑥) = 1 − exp [−
𝑥2

2𝜎2] – (19a) 

 

𝑊𝑒𝑖𝑏𝑢𝑙𝑙 𝐶𝑃𝐷𝐹, 𝐹(𝑥) = 1 − exp [− (
𝑥−𝐵

𝐴
)
𝑘

] – (19b) 

 

where F(x) is the probability of Hmax being less than or equals to x. The coefficients 

are determined by the Maximum Likelihood Method, and the goodness-of-fit are 

evaluated using the Kolmogorov-Smirnov (KS) test. The D-statistic, which is the 

maximum absolute difference between cumulative probability density function (CPDF) 

between observed Hmax and Hmax generated by fitting the distribution is computed.  

 

𝐷𝑗 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚|𝐶𝑃𝐷𝐹(𝐻max) − 𝐹𝑗(𝐻max)| – (20) 

 

where Dj is the D-statistic, CPDF(Hmax) is the observed CPDF of Hmax, and Fj(Hmax) is 

the CPDF of Hmax estimated by fitting distribution of type j to observed Hmax. 

 The null hypothesis is observed Hmax belongs to distribution j. D-statistic is 

compared with critical value taken from Masey (1952) for large sample sizes at 0.05 

significance level:   

𝐷𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1.36/√𝑁 – (21) 

 

where N is the number of observations. The null hypothesis is rejected if the D-statistic 

exceeds Dcritical. Table 2 reveals the results of KS-test goodness of fit applied to Hmax.  
 

Table 2: KS-test for Rayleigh, Weibull, compared to critical D value 

 Distribution 
Critical Value for KS-test at 

0.05 significance level 

In-situ Site 
No. of 

Samples 
Rayleigh Weibull 𝑫𝒄𝒓𝒊𝒕𝒊𝒄𝒂𝒍 = 𝟏. 𝟑𝟔/√𝑵 

LT1 20519 0.25099 0.12136 0.0095 

LT2 24081 0.09234 0.05749 0.0088 

LT3 16510 0.13344 0.05350 0.0106 

LT4 25380 0.29055 0.11387 0.0085 

LT5 23634 0.13492 0.11708 0.0088 

ST1 1438 0.44565 0.12612 0.0359 

ST2  1440 0.43220 0.14057 0.0358 

ST3 4591 0.22664 0.18595 0.0201 

ST4 1183 0.36388 0.33702 0.0395 

ST5 2060 0.28443 0.13904 0.0300 
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Both Rayleigh and Weibull distribution D-statistics exceed critical D value. 

Therefore, distribution of Hmax for each in-situ site cannot be described by either 

Weibull or Rayleigh distribution. As the underlying distribution of Hmax is unknown, the 

return period is determined based on frequency analysis of observed Hmax itself 

(Equations 22). Table 3 (4) summarizes the statistics of Hmax (Hs) for each in-situ 

observation site. Rows with shaded columns indicate sites with too few observations 

to calculate return period.  
 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝐸𝑥𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝑊𝑎𝑣𝑒 𝐻𝑒𝑖𝑔ℎ𝑡, 𝐻 𝑖𝑠 𝐹(𝐻)

= 𝑁𝑜. 𝑜𝑓 𝑇𝑖𝑚𝑒𝑠 𝑊𝑎𝑣𝑒 𝐻𝑒𝑖𝑔ℎ𝑡𝑠 ℎ, 𝑒𝑥𝑐𝑒𝑒𝑑𝑠 𝐻 𝑖𝑛 𝑡ℎ𝑒 𝐸𝑛𝑡𝑖𝑟𝑒 𝑅𝑒𝑐𝑜𝑟𝑑

− (22𝑎) 

 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐸𝑥𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝐻, 𝑃(𝐻)

=
𝐹(𝐻)

𝑁𝑜. 𝑜𝑓 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑡ℎ𝑒 𝐸𝑛𝑡𝑖𝑟𝑒 𝑅𝑒𝑐𝑜𝑟𝑑
− (22𝑏) 

 

𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝐸𝑥𝑐𝑒𝑒𝑑𝑖𝑛𝑔 𝐻, 𝑇(𝐻) =
1

𝑃(𝐻)
− (22𝑐) 

 

Table 3: Significant Wave Height Statistics of All In-Situ Observation Sites  

  Significant Wave Height (m) 

No. 
Station 

Name 
Mode Median 

99th 

Percentile 
Maximum 

14-17 Day 

Return 

Period 

Value  

1 LT1 0.20 – 0.40 0.24 1.44 2.36 1.97 

2 LT2 0.20 – 0.40 0.24 0.80 3.43 0.99 

3 LT3 0.00 – 0.20 0.20 0.70 1.73 0.88 

4 LT4 0.00 – 0.20 0.09 0.58 2.32 0.85 

5 LT5 0.40 – 0.60 0.66 2.42 3.75 2.85 

6 ST1 0.80 – 1.00 0.96 1.34 1.46  

7 ST2 0.80 – 1.00 0.85 1.20 1.26  

8 ST3 1.60 – 1.80 1.62 2.50 2.63  

9 ST4 1.40 – 1.60 1.46 1.71 1.84  

10 ST5 0.40 – 0.60  0.50 0.94 1.05  
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Table 4: Maximum Wave Height Statistics of All In-Situ Observation Sites  

  Maximum Wave Height (m) 

No. 
Station 

Name 
Mode Median 99th Percentile Maximum 

14-17 Day 

Return 

Period Value  

1 LT1 0.20 – 0.40 0.30 1.83 2.99 2.50 

2 LT2 0.20 – 0.40 0.30 1.01 4.35 1.26 

3 LT3 0.00 – 0.20 0.25 0.89 2.19 1.11 

4 LT4 0.00 – 0.20 0.12 0.73 2.95 1.08 

5 LT5 0.60 – 0.80 0.94 3.59 5.86 4.30 

6 ST1 1.40 – 1.60 1.51 2.27 2.38  

7 ST2 1.20 – 1.40 1.31 2.23 2.23  

8 ST3 2.40 – 2.60 2.49 3.90 4.32  

9 ST4 2.20 – 2.40 2.27 3.06 3.16  

10 ST5 0.60 – 0.80 0.75 1.54 1.66  

 

 

Figure 3a. Observed return period curve for LT1 

 

 

Figure 3b. Observed return period curve for LT2 
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Figure 3c. Observed return period curve for LT3 

 

 

Figure 3d. Observed return period curve for LT4 

 

 

Figure 3e. Observed return period curve for LT5 
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2.2 Correlation Analysis with Respect to Hmax 

 

The estimation of Hmax is the primary goal of this study. Correlation analysis is 

performed to determine the most accurate predictor of Hmax. The coefficient of 

determination or R2 is used to evaluate the goodness of each predictor. In this study, 

the predictors considered are as follows: number of waves (N), wind speed (m/s), and 

Hs.  

 The number of waves is defined as duration of wave of observation divided by 

the mean wave period, Tm given in Equation 22:  

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑎𝑣𝑒𝑠, 𝑁 =
𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑊𝑎𝑣𝑒 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 (𝑠)

𝑀𝑒𝑎𝑛 𝑊𝑎𝑣𝑒 𝑃𝑒𝑟𝑖𝑜𝑑,𝑇𝑚
 – (22) 

 

Previous studies reported that Hmax is a function of Hs and N (Feng et al., 2014, 

Goda, 2000, and Forristall, 1978).  The Rayleigh distribution has been reported to give 

a good approximation of the distribution of individual wave heights (Goda, 2000). Most 

probable value, arithmetic mean value, and probability of exceeding μ, of Hmax are 

given in Equations 23, 24, and 25. They are based on the Rayleigh distribution.  
 

(
𝐻𝑚𝑎𝑥

𝐻𝑠
)𝑚𝑜𝑑𝑒 = 0.706√𝑙𝑛𝑁  - (23) 

 

(
𝐻𝑚𝑎𝑥

𝐻𝑠
)𝑚𝑒𝑎𝑛 = 0.706 [√ln𝑁 +

0.5772

2√ln𝑁 
] - (24) 

 

(
𝐻𝑚𝑎𝑥

𝐻𝑠
)𝜇 = 0.706√ln [

𝑁

ln
1

(1−𝜇)

] – (25)  

 

Fetch is an area over the ocean where wind blows in a constant direction. 

Stronger winds mean larger fetch which generates higher waves. In this study, we 

attempt to study the correlation between wind speed and Hmax. It is assumed that local 

winds measured in-situ approximates wind speeds over a larger area of the ocean. 

 The coefficient of determination, R2 measures the strength of linear relationship 

between two variables. R2 of 1 shows perfect linear fit between the variables while R2 

of zero shows that they are not linearly correlated. R2 score of less than 0.5 shows 

that the mean value of y is a better predictor than predictor x. R2 score of 0.5 shows 

that predictor x is just as good as the mean value of y in predicting y. R2 is depicted in 

Equation 26. 

𝑅2 = 1 −
∑(𝑦−�̂�)2

∑(𝑦−�̅�)2
 – (26)  

 

𝑦 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 (𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑎𝑛𝑑) 
 

�̂� − 𝐿𝑖𝑛𝑒𝑎𝑟 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (𝑥) 𝑤ℎ𝑒𝑟𝑒 𝑥 𝑖𝑠 𝑡ℎ𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟 
 

�̅� − 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑦 
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 Scatterplot analysis between Hmax against wind speed (Ws) is in Figures 4. The 

R2 score between Hmax and Ws is summarized in Table 5. Based on Figures 4 and 

Table 5, Ws is a poor predictor of Hmax with R2 score less than 0.50. Meanwhile, 

scatterplot analysis between Hmax and N are shown in Figure 5. R2 score between Hmax 

and N is depicted in Table 6. Analysis revealed in-situ observations in ST1, ST2, ST3, 

ST4, and ST5 during strong wind and rough seas warnings issued by MET Malaysia, 

have high R2 score exceeding 0.5. Refer to Table 7 / Figure 6 for warning category 

and dates. However, LT1, LT2, LT3, LT4, and LT5 site observations over long-term 

for all seasons revealed low R2 score. This may indicate N is a parameter useful for 

estimating Hmax only during strong wind and rough seas. Analysis between Hmax and 

Hs (Figure 7), and R2 score (Table 8) indicated Hs has strong linear relationship to 

Hmax. Nearly all in-situ observations exceed 0.95 R2 except ST3 (0.81) and ST5 (0.72). 

As a result, this study will mainly focus on using Hs to estimate Hmax.  

 

Table 5. R2 Score between Hmax and Wind Speed in decreasing R2 order 

 In-Situ Wave Observation Site R2 Score 

ST1 0.45 

ST4 0.28 

ST2 0.27 

LT5 0.19 

ST5 0.11 

ST3 0.05 

 

Table 6. R2 Score between Hmax and Number of Waves (N) 

 In-Situ Wave Observation Site R2 Score 

LT1 0.07 

LT2 0.01 

LT3 0.17 

LT4 0.26 

LT5 0.15 

ST1 0.53 

ST2 0.54 

ST3 0.81 

ST4 0.91 

ST5 0.72 
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Figure 4a. Scatterplots of Hmax vs. Ws for ST1 (top), ST4 (middle), and ST2 (bottom) 

in decreasing order of R2.   
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Figure 4b. Scatterplots of Hmax vs. Ws for LT5 (top), ST5 (middle), and ST3 (bottom) 

in decreasing order of R2.  
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Figures 5a. Hmax vs. N for LT1 (top), LT2 (middle), and LT3 (bottom). 
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Figures 5b. Hmax vs. N for LT4, LT5, ST1, and ST2 (top to bottom). 
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Figures 5c. Hmax vs. N for ST3, ST4 and ST5 (top to bottom). 
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Table 7a. Site, location, date, and selected warnings (MET Malaysia) 

No. Site Location 

Date of issue 

corresponding 

to the data 

Category of 

Warning  

Location of Warning 

(Applicable to or 

close to Site) 

1 ST1 

South China 

Sea (off 

coast of 

Terengganu) 

2022-06-29 2 

Northeastern part of 

Condore, northern part 

of Reef North, Layang-

Layang, Palawan 

2 ST2 2020-06-29 Thunderstorms 

Waters off Perlis, 

Kedah, Eastern Johore, 

Pahang, Eastern 

Sabah, and Lahad Datu 

3 ST3 

2022-02-23 3 

Southeastern part of 

Samui, Tioman, 

Condore, northern part 

of Bunguran, Reef 

North, Layang-Layang 

2022-02-28 2 
Condore, Reef North, 

Layang-Layang 

2022-04-03 1 

Condore, northeastern 

and southwestern parts 

of Reef North, Layang-

Layang 

2022-04-08 2 

Western part of 

Condore, Bunguran, 

eastern part of Reef 

North, Reef South, 

Layang-Layang, 

Labuan, Palawan 

2022-04-27 Thunderstorm  

Waters off Selangor, 

Johor, Pahang, 

Sarawak, Sabah 
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Table 7a. Site, location, date, and selected warnings (MET Malaysia) 

No. Site Location 

Date of issue 

corresponding 

to the data 

Category of 

Warning  

Location of Warning 

(Applicable to or close to 

Site) 

4 ST4 

South 

China Sea 

(off Miri, 

Sarawak) 

2022-04-08 2 
Waters off Sarawak, 

western Sabah, and Labuan 

2022-04-27 Thunderstorms  
Waters off Selangor, Johor, 

Pahang, Sarawak, Sabah 

5 ST5 

South 

China Sea 

(off 

Labuan) 

2022-06-28 Thunderstorms 

Eastern part of Phuket, 

Straits of Malacca, 

northwestern part of Samui, 

southeastern part of 

Bunguran, Reef North, 

Labuan, Palawan, Sulu 
 

 

Table 7b. Category of Warning, Wind speeds, and Wave heights (MET Malaysia) 

Category of Warning Wind speeds (kmph) Wave heights (m) 

3 Exceeding 60 Exceeding 4.5 

2 50 – 60  3.5 – 4.5 

1 40 – 50  2.5 – 3.5  

Thunderstorms for Shipping Up to 50 Up to 3.5m  

 
Figure 6. Location of warnings under the responsibility of MET Malaysia. 
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Table 8. R2 Score between Hmax and Hs 

 In-Situ Wave Observation Site R2 Score 

LT1 1.00 

LT2 1.00 

LT3 1.00 

LT4 1.00 

LT5 0.96 

ST1 0.81 

ST2 0.78 

ST3 0.96 

ST4 0.95 

ST5 0.95 
 

 

 

 

Figure 7a. Scatterplots, Hmax vs. Hs, site observations LT1, LT2, and LT3 (top to 

bottom). 
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Figure 7b. Scatterplots, Hmax vs. Hs, site observations LT4, LT5, ST1 and ST2 (top to 

bottom).  
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Figures 7c. Scatterplots, Hmax vs. Hs, site observations ST3, ST4, and ST5 (top to 

bottom).  
 

3.0 Methodology 

3.1 Ratio of Hmax to Hs 

Hmax is non-deterministic. Estimations of Hmax are normally within 1.6 to 2.0 of Hs.  

 

𝐻𝑚𝑎𝑥 = (1.6~2.0)𝐻𝑠 – (27) 

 

 Measurements of Hmax to Hs ratio are performed for each site and the results 

are depicted in Table 9 and Figures 8. Using long-term wave observations, sites in 
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shallow waters (depths < 20m) and close to the shore (LT1, LT2, LT3, and LT4) have 

ratios between 1.26 – 1.27. On the other hand, long-term wave observations for 

deeper depths (450m) in the open seas, LT5 have ratio of 1.44. However, for episodes 

of strong winds and rough seas (Tables 7) the ratios tend to 1.52 – 1.58 (ST1, ST2, 

ST3, ST4, and ST5). Histogram analysis (Figures 9) reveals that sites at deeper 

waters (LT5, ST1, ST2, ST3, and ST5) have ratios between 1.40-1.60, while sites in 

shallower waters (depth <20m) such as LT1, LT2, LT3, and LT4 have ratios 1.20 – 

1.40.  

Figure 10 shows the CPDF of Hmax/Hs ratio. The safest ratio is suggested to be 

1.8, with zero (0) probability of underestimating the Hmax. However, ratio of 1.50 

showed least overall error in estimating Hmax, but it may underestimate Hmax in rough 

seas and strong wind conditions. This is demonstrated by the average ratio for ST1, 

ST2, ST3, ST4 and ST5 exceeding 1.50 during strong winds and rough seas condition.  

 

 Table 9. Average Ratio of Hmax to Hs   

In-Situ Site Ratio of Maximum Wave Height (Hmax) to Significant Wave Height 

(Hs) 

LT1 1.27 

LT2 1.27 

LT3 1.27 

LT4 1.26 

LT5 1.44 

ST1 1.54 

ST2 1.54 

ST3 1.53 

ST4 1.58 

ST5 1.52 

 

 

Figure 8a. Ratio Hmax to Hs vs. Hs in LT1. 
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Figure 8b. Ratio Hmax to Hs vs. Hs in LT2. 

 

 

Figure 8c. Ratio Hmax to Hs vs. Hs in LT3. 

 

 

Figure 8d. Ratio Hmax to Hs vs. Hs in LT4. 
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Figure 8e. Ratio Hmax to Hs vs. Hs in LT5. 

 

 

Figure 8f. Ratio Hmax to Hs vs. Hs in ST1. 

 

 

Figure 8g. Ratio Hmax to Hs vs. Hs in ST2. 
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Figure 8h. Ratio Hmax to Hs vs. Hs in ST3. 

 

 

Figure 8i. Ratio Hmax to Hs vs. Hs in ST4. 

 

 

Figure 8j. Ratio Hmax to Hs vs. Hs in ST5. 
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Figure 9a. Histogram of Frequency, Ratio of Hmax to Hs for LT1 (left), LT2 (right). 

 
 

 

  
 

Figure 9b. Histogram of Frequency, Ratio of Hmax to Hs for LT3 (left), LT4 (right). 
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Figure 9c. Histogram of Frequency, Ratio of Hmax to Hs for LT5 (left), ST1 (right). 

 

  

 

Figure 9d. Histogram of Frequency, Ratio of Hmax to Hs for ST2 (left), ST3 (right). 
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Figure 9e. Histogram of Frequency, Ratio of Hmax to Hs for ST4 (left), ST5 (right). 

 

 

Figure 10a. Exceedance Probability of Hmax plotted against Hmax/Hs for LT1, LT2, LT3, 

LT4 and LT5.  
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Figure 10b. Exceedance Probability of Hmax plotted against Hmax/Hs for ST1, ST2, ST3, 

ST4, and ST5. 

 

3.2 Methods of Estimating Hmax 

3.2.1 Rayleigh Distribution 

Individual wave heights with sufficiently narrow spectrum could be approximated by 

the Rayleigh Distribution. Although real-life individual waves have spectral spread 

which deviates from this assumption, it has been reported (Goda, 2000) that the 

Rayleigh Distribution still provides a good estimation of the distribution of individual 

wave heights. This study aims to compare the observed Hmax with the Hmax calculated 

using the Rayleigh Distribution. The equations for calculating Hmax have already been 

described in Section 2.2, Equations 23, 24, and 25. The maximum wave height in 

this study is calculated at probability μ = 0.01 (refer to Equation 25 in Section 2.2).  

 

3.2.2 Linear Regression 

Section 2.2, Table 8 reported that the Hs has strong linear correlation with respect to 

the Hmax. Therefore, it is reasonable to consider linear regression as a potential method 

for accurate estimation of Hmax. The equation for linear regression is given in Equation 

28:  

𝑦 = 𝑚𝑥 + 𝑐 – (28) 
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where y is the predictand which is the Hmax, x is the predictor which is Hs, m is a 

coefficient of gradient, and c is the coefficient of intersect. The optimal parameters are 

found by minimizing the least squared error between true values of y with predicted 

values by regression (�̂�). In our study, all forms of regression coefficients are fitted by 

the method of iteratively reweighted least squares.  

 

3.2.3 Polynomial Regression 

A weakness of linear regression is that it only models’ linear relationships between 

predictor (x) and predictand (y). In other words, linear regression is not suitable for 

non-linear relationships between x and y. This limitation is depicted in Figure 11. In 

this example, we note that linear regression is incapable of correctly plotting the best-

fit curve for simple quadratic relationship, y = x2 even though the R2 score is high.  

To model non-linear relationships, the method of polynomial regression can be 

used. In this method, predictand y is modelled as a function to the nth degree 

polynomial of predictor x. There is a risk of overfitting if the degree (n) is too high. In 

this study, we evaluate polynomial regression to the power of 2 or n = 2. The 

polynomial regression equation is given in Equation 29. 

 

𝑦 = 𝛽2𝑥
2 + 𝛽1𝑥 + 𝛽0 – (29)  

 

where y is the predictand (in this study, Hmax), x is the predictor (Hs in our study).  

 

Figure 11. Linear Regression best-fit line against non-linear (quadratic) relationship. 
 

3.2.4 Power Regression 

Although polynomial regression (Section 3.2.3) can fit non-linear relationships 

between predictand y and predictor x, it uses more coefficients (3 coefficients) to 

explain the relationship between 2 variables (y and x). The relationship modelled by 
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polynomial regression (Equation 29) is also difficult to explain because it is not one-

on-one, but one to two, that is y with respect to x2, x1, and x0.  An alternative to 

polynomial regression is power regression.  

 Power regression can fit non-linear relationships as well. In addition, power 

regression uses only 2 coefficients (a and b) to explain the relationship between 2 

variables (x and y). Power regression is also easier to explain because it models y to 

x in a one-on-one relationship. In a nutshell, power regression models y as a function 

of x raised to the power of b (Equation 30):  

 

𝑦 = 𝑎𝑥𝑏 – (30) 

 

3.2.5 Multiple Linear Regression (MLR)  

MLR attempts to model the predictand y by calculating linear relationships between 

set y and set {x1, x2, x3, …, xN} as described in Equation 31:  

 

𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ 𝑏𝑛𝑥𝑛 – (31) 

 

 MLR is an extension of linear regression to multiple predictands. This method 

assumes that predictand y is linearly dependent on predictor set X = {x1, x2, …, xN}. 

Additionally, the residuals are assumed to follow a normal distribution. The advantage 

of MLR is that the relationship between predictand and predictors are easy to explain.  

 In this study, for in-situ observations labelled LT1, LT2, LT3, LT4, ST1, ST2, 

ST3, ST4, and ST5, the predictors are (Hs), zero-crossing wave period (Tz), and peak 

wave period (Tp). Meanwhile, for in-situ observation labelled LT5 the predictors are 

(Hs), period of the highest wave (Thmax), estimated mean wave period in respect to 

fundamental zeroth moment and first moment, m1 (Tm01), estimated mean wave 

period in respect to fundamental zeroth moment and first moment, m2 (Tm02), 

estimated mean wave period in respect to fundamental m0 and first moment m1 in 

lower frequency band (Tm02a), and estimated mean wave period in respect to 

fundamental m0 and first moment m1 in mid-frequency band (Tm02b).  

 

3.2.6 Deep Learning 

Regression-based techniques assume that the relationship between Hs to Hmax obeys 

a pre-defined relationship. However, this may not be the case. Artificial Neural 

Networks (ANN) can estimate predictands without any underlying assumption of the 

relationship. ANNs have the advantage of being able to model non-linear relationship 

between predictors and predictands. It was reported that the (Hs) relationship with 

average zero-cross wave period (Tz) and peak-spectral period (Tp) was more 

accurately modelled using ANNs while Hs relationship to maximum spectral energy 

density (Emax) and (Hmax) is equally well modelled between regression and ANNs 

(Agrawal and Deo, 2004). This study compares the performance of ANNs with 

regression methods in estimating (Hmax) using (Hs). ANNs have the disadvantage of 
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being difficult to explain the mathematical relationship in a concise and precise manner 

as they consist of several layers of equations. In addition, ANNs also have the 

disadvantage of consuming more computational power than regression techniques 

during the training phase.  

 The predictor, (Hs) and predictand, (Hmax) are scaled to values of 0 to 1 before 

ingested into the ANN. This study uses multilayer feedforward Neural Network 

consisting of 3 layers that contain 300, 400, and 1 node respectively, with learning rate 

of 0.00001. The Rectified Linear Unit or ReLU activation function was used in our 

study. The ReLU activation function avoids the vanishing gradient problem associated 

with sigmoid and tanh activation functions. Meanwhile, the loss function of this study 

is the mean absolute error (MAE) with Nadam optimizer used to minimize the MAE. 

The Nadam optimizer incorporates a momentum component to improve ANN 

convergence speed and quality. Verification of Nadam optimizer reports smaller Mean 

Square Error (MSE) than other common optimizers (Dozat, 2016).  

 

4.0 Results and Analysis 

4.1 Scatterplot and Boxplot Analysis 

The algorithms mentioned in Section 3.2 namely Rayleigh distribution, linear 

regression, polynomial regression, power regression, multiple linear regression and 

neural networks are used to estimate the Hmax based on Hs and wave period. The 

estimated Hmax is then plotted against the observed Hmax. Figures 12a-j depict 

scatterplots for LT1, LT2, LT3, LT4, LT5, ST1, ST2, ST3, ST4, and ST5 respectively. 

R2 score and mean absolute error (MAE) were used to quantify the goodness of fit 

between estimated to observed maximum wave height.  

 Long term wave observations gathered for all months of the year at LT1, LT2, 

LT3, LT4 and LT5 indicate that the Rayleigh mode and mean tends to overestimate 

Hmax. The overestimation is especially acute for Rayleigh Hmax at 0.01% probability. 

Linear regression, polynomial regression, power regression, multiple linear 

regression, and neural network (Hs) produce the most accurate estimation of Hmax 

compared to observation. Surprisingly neural networks with (Hs), zero-crossing wave 

period (Tz), and peak wave period (Tp) have lower skill compared to neural networks 

using only (Hs). Estimating (Hmax) by multiplying (Hs) with constant 1.27 for LT1, LT2, 

LT3, and LT4 and constant 1.50 for LT5 worked almost as well as regression and 

neural network method.  

 Short-term wave observations in strong winds and rough seas recorded in ST1, 

ST2, ST3, ST4, and ST5 showed that Rayleigh mode and mean underestimates Hmax. 

This contrasts with long term observations recorded in LT1, LT2, LT3, LT4, and LT5. 

Meanwhile, Rayleigh Hmax at 0.01% probability slightly overestimates Hmax. 

Regression showed negligible difference in skill compared to neural networks (Hs). 

Three (3) parameter neural network (Hs, Tz, Tp) showed worse skill compared to one 

(1) parameter neural network (Hs). Regression techniques and single parameter 

neural network (Hs) performed equally well with a high R2 score. Estimating (Hmax) by 

multiplying (Hs) with 1.50 showed nearly as good R2 and MAE skill as regression and 

neural networks. 
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Figure 12a. Scatterplot of Estimated Hmax (y-axis) vs.Observed Hmax (x-axis) for LT1.  
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Figure 12b. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for LT2.  
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Figure 12c. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for LT3.  
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Figure 12d. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for LT4.  
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Figure 12e. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for LT5.  

 

 

 

 

 



42 
 

   

   

   

 

 

 

Figure 12f. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for ST1. 
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Figure 12g. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for ST2. 
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Figure 12h. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for ST3.  
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Figure 12i. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for ST4. 
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Figure 12j. Scatterplot of Estimated Hmax (y-axis) vs. Observed Hmax (x-axis) for ST5. 

 

Analysis of the distribution for each in-situ observation site shows that 

multiplication of Hs by 1.27 for sites at shallow water (LT1, LT2, LT3, and LT4) and 

1.50 for sites at deep water (LT5), or strong winds and rough seas (ST1, ST2, ST3, 

ST4, and ST5) is nearly as good as regression analysis and neural network prediction. 

Figures 13a to 13j depict box plots for each site. MAE refers to mean absolute error 

while std MAE is the standard deviation of the MAE.  
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Figure 13a. Boxplot Analysis for LT1 

 

 

Figure 13b. Boxplot Analysis for LT2 
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Figure 13c. Boxplot Analysis for LT3 

 

 

Figure 13d. Boxplot Analysis for LT4 
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Figure 13e. Boxplot Analysis for LT5 

 

 

Figure 13f. Boxplot Analysis for ST1 
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Figure 13g. Boxplot Analysis for ST2 

 

 

Figure 13h. Boxplot Analysis for ST3 
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Figure 13i. Boxplot Analysis for ST4 

 

 

Figure 13j. Boxplot Analysis for ST5 
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4.2 Regression Analysis  

The regression equation between Hmax as predictand with respect to its predictors are 

analysed. Regression equations give insight into the relationship between predictand 

and each predictor. The coefficient of regression describes the rate of change of 

predictand with respect to each predictor. 

 

Table 10. Regression Equation of 𝐻max at Each In-Situ Observation Sites.  

LT1, LT2, LT3, and LT4 

Linear Regression 𝐻max = 1.27 × 𝐻𝑠 

Polynomial Regression 𝐻max = 0.00 × 𝐻𝑠
2 + 1.27 × 𝐻𝑠 + 0.00 

Power Regression 𝐻max = 1.27 × 𝐻𝑠
1.00 

Multiple Linear Regression 𝐻max = 1.27 × 𝐻𝑠 + 0.00 × 𝑇𝑧 − 0.00 × 𝑇𝑝 − 0.00 

LT5 

Linear Regression 𝐻max = 1.48 × 𝐻𝑠 − 0.02 

Polynomial Regression 𝐻max = 0.02 × 𝐻𝑠
2 + 1.44 × 𝐻𝑠 − 0.01 

Power Regression 𝐻max = 1.45 × 𝐻𝑠
1.02

 

Multiple Linear Regression 𝐻max = 1.46 × 𝐻𝑠 − 0.00 × 𝑇ℎ𝑚𝑎𝑥 − 0.06 × 𝑇𝑚01

+ 0.05 × 𝑇𝑚02 − 0.00 × 𝑇𝑚02𝑎

+ 0.05 × 𝑇𝑚02𝑏 − 0.00 × 𝑇𝑝 − 0.16 

ST1 

Linear Regression 𝐻max = 1.57 × 𝐻𝑠 − 0.03 

Polynomial Regression 𝐻max = 0.55 × 𝐻𝑠
2 + 0.39 × 𝐻𝑠 + 0.59 

Power Regression 𝐻max = 1.54 × 𝐻𝑠
1.02 

Multiple Linear Regression 𝐻max = 1.62 × 𝐻𝑠 − 0.05 × 𝑇𝑧 + 0.01 × 𝑇𝑝 + 0.03 

ST2 

Linear Regression 𝐻max = 1.63 × 𝐻𝑠 − 0.09 

Polynomial Regression 𝐻max = 0.60 × 𝐻𝑠
2 + 0.50 × 𝐻𝑠 + 0.43 

Power Regression 𝐻max = 1.55 × 𝐻𝑠
1.06 

Multiple Linear Regression 𝐻max = 1.64 × 𝐻𝑠 − 0.01 × 𝑇𝑧 + 0.02 × 𝑇𝑝 − 0.14 
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Table 10. (Continued)  

ST3 

Linear Regression 𝐻max = 1.54 × 𝐻𝑠 − 0.00 

Polynomial Regression 𝐻max = −0.08 × 𝐻𝑠
2 + 1.74 × 𝐻𝑠 − 0.09 

Power Regression 𝐻max = 1.55 × 𝐻𝑠
0.99

 

Multiple Linear Regression 𝐻max = 1.47 × 𝐻𝑠 + 0.05 × 𝑇𝑧 − 0.00 × 𝑇𝑝 − 0.12 

ST4 

Linear Regression 𝐻max = 1.62 × 𝐻𝑠 − 0.03 

Polynomial Regression 𝐻max = 0.06 × 𝐻𝑠
2 + 1.52 × 𝐻𝑠 − 0.01 

Power Regression 𝐻max = 1.58 × 𝐻𝑠
1.04 

Multiple Linear Regression 𝐻max = 1.88 × 𝐻𝑠 − 0.08 × 𝑇𝑧 − 0.02 × 𝑇𝑝 + 0.22 

ST5 

Linear Regression 𝐻max = 1.63 × 𝐻𝑠 − 0.05 

Polynomial Regression 𝐻max = 0.14 × 𝐻𝑠
2 + 1.47 × 𝐻𝑠 − 0.01 

Power Regression 𝐻max = 1.59 × 𝐻𝑠
1.07 

Multiple Linear Regression 𝐻max = 1.56 × 𝐻𝑠 + 0.06 × 𝑇𝑧 − 0.00 × 𝑇𝑝 − 0.17 

Legend 

Variable Name in Regression 

Equation 

Description of Variable Name 

𝐻max Maximum Wave Height (m) 

𝐻𝑠 Significant Wave Height (m) 

𝑇𝑧 Zero-crossing wave period (s) 

𝑇𝑝 Peak wave period (s) 

𝑇ℎ𝑚𝑎𝑥 Period of the highest wave (s) 

𝑇𝑚01 Estimated mean wave period in respect to 

fundamental zeroth moment and first moment, 

m1 

𝑇𝑚02 Estimated mean wave period in respect to 

fundamental zeroth moment and first moment, 

m2 
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 Table 10. indicates that long-term wave observations near the shore, and in 

shallow waters such as LT1, LT2, LT3, and LT4 have the same regression equation. 

For these sites, the Hmax is equal to 1.27 times the Hs. On the other hand, the LT5 site 

is in the open seas and in deeper waters. LT5 has long term records too. Compared 

to the LT1-LT4 sites in shallow waters, the LT5 site has a higher ratio of Hmax to Hs of 

approximately 1.50. For both LT1-LT4 and LT5 long term records, the regression 

coefficient of wave periods is negligible in comparison with the Hs. LT1-LT4 sites 

showed zero regression coefficient (to 2 decimal places) for zero-crossing wave 

period, and peak wave period with respect to Hs. Meanwhile, LT5 mean period Tm01, 

Tm02, and Tm02b showed regression coefficients of -0.06, 0.05, and 0.05 

respectively. They are 24.3, and 29.2 times smaller than the regression coefficient for 

Hs. This indicates that the wave periods do not influence the Hmax. 

 Meanwhile, sites with short-term wave observations (at most 5 days) during 

strong winds and rough seas, such as ST1, ST2, ST3, ST4 and ST5 have a higher 

ratio of Hmax to Hs closer to 1.60. Nonetheless, consistent with long-term wave 

observations, the zero-crossing wave period (Tz) and peak wave period (Tp) does not 

influence the (Hmax).  This is indicated by the very small regression coefficients of Tp 

and Tz.  

 

4.3 K-Fold Stratified Cross Validation 

 

The methods outlined in this study are used to estimate the Hmax. Subsequently, the 

estimated Hmax is compared against the observed Hmax. A widely used method of 

comparing an estimate with the ground truth is by cross-validation.  

 It is not possible to use the same data to train the model and validate the model. 

This will cause overfitting whereby the model is specifically trained only for that 

dataset. Even noise and other errors will be modelled. Although the overfitted model 

may have very low error, it is only with respect to the dataset it has trained with. When 

that model is deployed on datasets it has not seen, such as in real-time operation, that 

model will fail.  

 To prevent this issue, the model needs to be validated or compared against 

dataset excluded from training. In this study, the entire dataset is first shuffled 

randomly. Random shuffling increases the likelihood that each subset of dataset 

population has approximately the same distribution as other subsets of the population. 

This is also known as stratification.  

 Then, the dataset is split into k = 10 subsets. The model is trained using k-1 

subsets and validated against the remaining subset. Subsequently, the error, E is 

calculated. This procedure is repeated until each k subset has been part of the 

validation dataset. As a result of stratification by random shuffling, each k subset 

population density should represent the population dataset. The 10-fold stratified 

cross-validation is applied in this study. Figure 14. depicts the implementation of 10-
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fold cross-validation used in this study. Equation (32) shows the average mean 

absolute error after 10-fold cross-validation, where i refers to the i-th subset of the 

data, which is divided into 10 subsets.  

 

𝑀𝐴𝐸𝑐𝑟𝑜𝑠𝑠 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒𝑑 =
1

10
∑|𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡 − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑|𝑖

10

𝑖=1

 − (32) 

 

 

Figure 14. 10-fold cross validation. Dataset of each station are randomly shuffled and 

split into 10 subsets. The model is trained 10 times using 9 of the subsets and validated 

against the remaining 1 subset.  

 

 Based on 10-fold cross validation, the MAE is calculated for each method of 

estimating Hmax, that is Hs times 1.50, Hs times 1.27, multiple regression, linear 

regression, polynomial regression, power regression, neural network with respect to 

Hs, and neural network with respect to both Hs and wave period. The MAE for each 

method at each in-situ observation site is tabulated in Figure 15. 

  For the LT1, LT2, LT3, and LT4 stations that have long-term wave observations 

and are in shallow waters, the method of regression and method of neural network 

with respect to just Hs has the least MAE. The simplest method of estimating Hmax for 

these stations is by multiplying Hs by 1.27.  

 On the other hand, the worst method of estimating Hmax for stations with short-

term wave observations at conditions of strong winds and rough seas, is multiplication 

by 1.27. This is because the ratio between Hmax and Hsig is observed to be closer to 

1.50 – 1.60 for these stations (ST1, ST2, ST3, ST4, and ST5). Method of multiple 

regression, linear regression, polynomial regression, and neural network (with respect 

to Hs) are equally the best methods of Hmax estimation.  
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Figure 15. Heatmap indicating Mean Absolute Error x 1000 for each method of 

estimating Hmax (vertical axis) with respect to in-situ observation site at the horizontal 

axis.   

 

5. Conclusion 

 Ten (10) wave observation sites were used in this study. Four were in shallow 

waters with depth less than 20m, (LT1, LT2, LT3, and LT4) while the remaining were 

in deeper waters (depth at least 66m). Four observation sites had long-term data 

spanning at 10 years (LT1, LT2, LT3, and LT4), one observation site had long-term 

data spanning 5 years (LT5), and remaining observation site had short-term 

observations of at most 5 days (ST1, ST2, ST3, ST4, and ST5) during strong winds 

and rough seas conditions, based on warnings issued by MET Malaysia (refer to Table 

7, Section 2.2).  

 The ratio of Hmax to Hs in shallow waters was 1.27 while the ratio was 1.50 

otherwise. On the other hand, the ratio increased to between 1.50-1.60 during strong 

winds and rough seas conditions. Calculations of Hmax by Rayleigh mode, mean, and 

probability μ = 0.01 tended to overestimate observed Hmax for long-term wave 

observations. On the contrary, Hmax calculated by Rayleigh mode, and mean tended 

to underestimate Hmax observed during strong winds and rough seas conditions. 

Rayleigh Hmax at probability μ = 0.01 tends to slightly overestimate observed Hmax 

during strong winds and rough seas condition.  

 Observed Hmax is poorly correlated to wind speed, wave periods and number of 

waves. On the other hand, observed Hmax is highly correlated with Hs observation. 

Estimations of Hmax by linear, polynomial, power, and artificial neural networks with Hs 

as predictor showed less Mean Absolute Error (MAE) than multiplying Hmax by a 
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constant. Nevertheless, the simplest rule of thumb for estimating Hmax is multiplication 

of Hs by 1.27 in shallow waters near the shore (LT1, LT2, LT3, and LT4), multiplying 

Hs by 1.50 in deep waters under normal sea conditions (LT5), and multiplying Hs by 

between 1.50-1.60 under strong winds and rough sea conditions (warning issued by 

MET Malaysia) as shown in ST1, ST2, ST3, ST4 and ST5 observation sites. Ratio of 

Hmax to Hs may increase when wave distribution is shifted towards the tails (increased 

kurtosis), during rough seas and strong wind conditions. Kurtosis may be explored to 

increase accuracy of Hmax measurement in the future. 

 More observations are needed for future work. Longer term observations are 

needed to improve statistical significance of return period analysis. The underlying 

distribution of Hmax must be determined empirically using good quality wave 

observations to accurately determine return period of Hmax. Knowing the underlying 

distribution of wave observations is crucial in calculating more accurate Hmax.  
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