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Abstract 

 

The Radar Integrated Nowcasting System (RaINS) has been developed and put into operation in 

the Malaysian Meteorological Department (MMD) as a new nowcasting system that generates 

rainfall prediction up to 3 hours ahead. RaINS seamlessly combines radar-based extrapolation 

nowcast with forecast of convection-permitting numerical weather prediction (NWP) model in 

MMD. It is based on the blending algorithm adopted in the SWIRLS (“Short-range Warning of 

Intense Rainstorms in Localized Systems”) nowcasting system of the Hong Kong Observatory 

(HKO). To determine the most suitable prognostic output of NWP in blending with SWIRLS 

nowcast, the model-simulated maximum reflectivity from 1000hPa to 100hPa along with the 

simulated average reflectivity fields from 850-750hPa and 850-500hPa were examined in this 

study. Using CAPPI at 2km of height as verifying observation, the performance of RaINS was 

verified using two significant cyclone cases in Peninsular Malaysia. It was found that blending 

with maximum reflectivity was more accurate than using the averaged reflectivity fields. 

Additionally, a higher skill score was obtained when the radar motion vector was computed using 

ensemble average motion vector as opposed to using single member motion vector. Then 

forecasting skill can be improved with persistence in the hyperbolic tangent function used to blend 

SWIRLS output with NWP forecast. Future direction of the development of RaINS such as using 

deep learning precipitation nowcasting for radar extrapolation together with assimilation of near 

real time observation data into NWP model are discussed. 

 
 
 



 

1 

 

1. Introduction  

Nowcasting and very short-range forecasting techniques are based on detailed de-

scription of the present weather. The period of nowcast is usually up to 6 hours after the 

initial observation time. This is a critical time window for flash flood and landslide risk 

assessments, especially over densely populated urban areas, and complex terrain. In the 

Malaysian Meteorological Department (MMD), radar data are used in nowcasting 

because they can detect precipitation over a long range of up to 300km at a fine resolution 

of 1km and at frequent intervals of once every 10 minutes. Over the past decades, diverse 

nowcast techniques have been developed to extrapolate observed radar echoes into the 

near future to predict short-term rainfall intensity and distribution. 

 Operational nowcasting methods can be classified generally into three 

approaches, namely the object-based method, the pixel-based method, and NWP models. 

The object-based approach identifies the storm centroid in one radar image and calculates 

the speed of that centroid based on its position in the next image. Object-based methods 

include SCIT (Storm Cell Identification and Tracking algorithm) [1], TITAN 

(Thunderstorm Identification, Tracking, Analysis, and Nowcasting) [2], and TRT 

(Thunderstorms Radar Tracking) [3]. Since a single velocity vector is associated with a 

centroid, this method may be deficient if the shape of the storm edge changes between 

consecutive radar images [1]. Object-based methods may not detect storm cells of all 

shapes, sizes, and intensity because storms are rigidly classified as areas of consecutive 

reflectivity within a range of reflectivity intensities [1–3]. Object-based methods simplify 

the domain into a few storm cells; therefore, it is more sensitive to error propagation from 

errors in storm cell identification, trajectory, merges, and splitting. On the other hand, the 

pixel-based method calculates gridded motion vectors at each pixel as a dense motion 

field over the domain. This suggests that the pixel-based method accounts for storms of 

all shapes, sizes, and intensity [4]. An example of a pixel-based method is TREC 

(Tracking Radar Echoes by Correlation Technique) reported by [5]. TREC determines the 

motion vector based on maximum correlation between two consecutive radar images. [6] 

reported that TREC produced realistic wind fields of mesoscale weather systems. [7] 

adapted the TREC method for nowcasting in complex orography by imposing smoothing 

and continuity constraints upon TREC motion vectors. Nevertheless, both the object-

based and pixel-based approaches are not able to dynamically account for radar echo 

growth and decay. This would lead to rapid decrease in predictive skill within the first 

few hours of severe weather. By far NWP models are the best because they resolve 
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atmospheric flow through complex terrain and capture current atmospheric conditions 

through assimilating near real time station, radar, and satellite observation data. However, 

this NWP approach requires expensive computing power compared to the pixel and 

object-based methods. A compromise between accuracy and computing power would be 

to primarily use a pixel-based approach at very short lead time and then assign more 

weight to NWP models to compensate for the drop in skill [8]. This is the approach 

utilized in the Radar Integrated Nowcasting System (RaINS) operated by the MMD. 

The RaINS nowcasting system is based upon the RAPIDS (Rainstorm Analysis 

and Prediction Integrated Data-processing System) developed by the Hong Kong 

Observatory (HKO) [9,10]. The nowcast component, i.e., radar-based extrapolation in 

RaINS and RAP-IDS is based on SWIRLS (Short-range Warning of Intense Rainstorms 

in Localized Systems) that performed favourably compared to other pixel-based radar 

extrapolation methods [11]. The hyperbolic tangent weighting function is employed to 

blend SWIRLS now-cast with the corrected QPF (quantitative precipitation forecast) 

from the convection-permitting NWP model. The corrections applied to NWP QPF 

includes bias correction using the Weibull distribution to nudge NWP reflectivity values 

closer to observed radar values. Descriptions of bias correction methods can be referred 

to in [8,9]. Nevertheless, the difference between RaINS and RAPIDS lies in the 

hyperbolic tangent function that is utilized to blend SWIRLS output with NWP output. 

RaINS can be configured to use several different hyperbolic tangent weighting functions 

but choose only one weighting function which gives the SWIRLS-NWP blend closest to 

radar observations 3 hours ago. The chosen weight may vary in each nowcast cycle, as 

compared to a single weighting function adopted in the original [9]. 

The RAPIDS has been shown to be skilful in very short-term forecasts of 

convective storms of sub-synoptic to meso-𝜶 scales [6,9,10,12,13].  Therefore, it is 

expected that RaINS in MMD may also be skilful for the meteorological processes of 

similar spatial scales in Malaysia. This is confirmed by the work of [14] who studied the 

skill of RaINS during a cyclonic vortex event. Therefore, this study aims to examine the 

robustness of the RaINS configuration by including an additional cyclonic vortex event. 

In this study, besides evaluating the big storm event induced by the cyclonic vortices, we 

also determine the skill of RaINS in forecasting convective rainfall events that took place 

at the same time. Using these events as assessments, this would enable us to fine-tune 

RaINS through testing various simulated reflectivity fields from NWP model, and to 

examine the usage of an optical flow average from multiple flow parameters. In addition, 
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the current RaINS configuration that selects one out of many hyperbolic tangent 

weighting functions based on past radar observations to nowcast was compared against 

the RaINS configuration where a constant non-variable single hyperbolic tangent 

weighing function was used. This was done to assess the impact of persistency upon 

nowcast accuracy where the selection of SWIRLS-NWP blending function was not 

constant but based upon the most optimal blending weight three hours ago [14].  

The input radar and NWP data used in this study are described in Section 2 and 

the configuration of RaINS tested in this study outlined in Section 3. Thereafter, the 

performance of RaINS at these events is discussed in Section 4. Consequently, the 

optimal configuration of RaINS to be used operationally and the way forward are 

proposed in Section 5. 

 

2. Data 

The input radar data of RaINS are the 2km CAPPI (Constant Altitude Plan 

Position Indicator) reflectivity (in dBZ), denoted by CAPPI-2km hereinafter, are obtained 

from the 13 operational radar stations of the MMD depicted in Figure 1. The spacing 

between grid points is 0.833 km with an update frequency of 10 minutes. [15] used 

CAPPI-1km for radar-based nowcasting of cyclone Ogni in India while [11] reported that 

the typical operational product of HKO SWIRLS used CAPPI-2km instead. [16] analysed 

the radar beam range with respect to topography and reported that CAPPI-1km in 

Malaysia is more prone to terrain blockage compared to CAPPI-2km. Additionally, visual 

analysis of radar images during several heavy rainfall events was performed [16], and it 

was reported that CAPPI-1km can be more susceptible to ground clutter. Therefore, based 

on [16] we conclude that CAPPI-2km is the most suitable height for sampling radar 

reflectivity.  CAPPI-2km data was integrated to a common configuration of grid points 

through the inverse distance weighted interpolation method to the power of unity, 

whereby the maximum reflectivity value is taken if there is an overlap of more than one 

radar. The inclusion of all radar stations within a combined common grid reduces the risk 

of heavy rainfall events being un-detected, as well as to filter spurious noise in CAPPI 

data as input to RaINS if a single radar captures unrealistically strong reflectivity. 

The Weather Research and Forecasting (WRF) model was used in this study [17]. 

The non-hydrostatic dynamical core is used in the MMD-WRF system, with the physical 

pro-cesses including the Dudhia radiation scheme, and the Thompson microphysics 

scheme and the YSU boundary layer parameterization scheme. Convective 
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parameterization scheme was disabled in MET-WRF as the horizontal resolution is 1km 

that should explicitly resolve the cloud microphysics at grid scale. The horizontal domain 

shown in Figure 2 has a 1km resolution consisting of 771 meridional grid points, 2196 

zonal grid points and 51 vertical levels. This is the innermost domain within a 3-way 

nesting configuration. The MET-WRF was initialized 4 times a day at 00Z, 06Z, 12Z, and 

18Z by NCEP GFS fore-cast data at 0.25-degree latitude/longitude resolution. Currently 

there is no data assimilation applied although the MMD plans to introduce satellite data 

assimilation soon. Although the largest to smallest domain have forecast length of 168 

hours, RaINS only in-gests the latest 6-hourly MET-WRF run, subject to at least 6 hours 

spin-up time. Usage of the most recent MET-WRF run avoids the forecast from being 

fully driven by large-scale forcing from the parent domains at longer lead time. Due to 

constraints in computational power, it is not possible to run MET-WRF in Rapid Update 

Cycle (RUC) configuration. The predicted MET-WRF averaged reflectivity field at the 

850-500hPa and 850-750hPa layer as well as the maximum reflectivity between 1000 and 

100hPa were tested in this study to find the most suitable layer of model simulated 

reflectivity in RaINS. 
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Figure 1. Radar coverage in Malaysia.  
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Figure 2. Parent domain of MET-WRF at 9km (largest), 3km (d02), and 1km (d01-smallest). 

 

 

 

 1 

Figure 2. Parent domain of MET-WRF at 9km, 3km (d02), and 1km. 2 
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3.  Methodology 

This section begins with an explanation of the optical flow parameters used by 

the SWIRLS radar extrapolation system in this study. After that, the present configuration 

of RaINS operationalized by the MMD was described. Finally, the configuration of 

RaINS tested in this study is described. 

 

3.1. Optical flow parameters 

This study compares the performance of just one SWIRLS radar velocity [14] 

which is also used in daily operation, versus the performance of the ensemble average of 

several SWIRLS radar velocities. The ROVER parameters used in this study were 

determined through trial experiments using squall-line cases in Malaysia. There are 7 

parameters used in the ROVER algorithm to calculate echo motion by optical flow. Five 

parameters denoted by Lf,  Lc, σ, α, and ρ control variational optical flow. Further details 

regarding the variational optical flow technique used here are available from [18], [19] 

and [20]. Two other parameters (Zc, and ζ) control image mapping to grayscale using 

Arc-Tangent Filter [20]. 

Prior to calculating the echo motion field by optical flow, the radar data are 

mapped to grayscale images to resolve intense individual echoes and eliminate noise 

[14,20].  The parameter ζ controls the contrast between radar echoes above and radar 

echoes below Zc when the radar image is mapped to the new grayscale image. Higher ζ 

produces sharper contrast while lower ζ reduces contrast. Zc is also known as threshold 

of significant con-vection while ζ is also known as the sharpness of inflection around Zc. 

RaINS sets the Zc to be equal to two thirds the maximum radar reflectivity of the current 

radar image. This scales for all types of radar echoes including relatively less intense 

radar echoes. For ex-ample, if Zc is fixed at 33dBZ, storms with less intensity than 33dBZ 

will be filtered too much. Since RaINS is targeted to operate for all weather conditions, 

Zc is designed to be scaled based on ⅔ (two thirds) of the current maximum radar 

reflectivity. Figure 3. depicts Zc and ζ.
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Figure 3. The radar reflectivity mapped to grayscale intensity using three separate arc-tangent filters where ζ = 12, 9, and 6 and Zc = 33dBZ. 
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The radar reflectivity (dBZ) is mapped to grayscale intensity images as depicted in 

Figure 3. The mapping function is mathematically written below:  

 

𝐺𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒 = 255 ×

𝐴𝑇𝐴𝑁(𝑍−𝑍𝑐)

𝜁
−

𝐴𝑇𝐴𝑁(0−𝑍𝑐)

𝜁

𝐴𝑇𝐴𝑁(60−𝑍𝑐)

𝜁
−

𝐴𝑇𝐴𝑁(0−𝑍𝑐)

𝜁

    (1) 

 

where Z is the radar reflectivity of the radar image from 0 to 60dBZ mapped to grayscale 

value from 0 to 255 while Zc is the threshold of significant convection and ζ is the inflection 

centred at Zc.  

After grayscale mapping, the velocity vector field of the radar images is computed 

through variational optical flow. There are six parameters used namely Lf, Lc, σ, α, and ρ. 

Lf is the finest spatial scale while Lc is the coarsest spatial scale. [18] used a multigrid 

approach to speed up optical flow calculation. The solution at the coarsest grid (Lc = 7 

pixels) was used as initialization on the next finer grid until the finest grid (Lf = 1 pixel). 

This multigrid approach allows error reduction by removing high frequency errors on the 

coarser grid which will otherwise appear as low frequency errors on the finest grid. 

Meanwhile, the parameter σ represented the Gaussian convolution for image 

smoothing [11]. It smooths the image through a low-pass Gaussian convolution filter to 

remove noise and destabilize other high frequency errors [19]. Moderate pre-smoothing 

improves optical flow accuracy but too much pre-smoothing may destroy important image 

information. Subsequently, parameter α is known as the regularization parameter [18]. 

Larger values of α leads to smoother motion vectors across the radar domain [19].  

Parameter ρ is called the Gaussian convolution for local vector field smoothing [11]. Within 

a neighbourhood of size ρ, the optic flow vector is assumed to be constant [19]. To calculate 

the optical flow, the following equation is minimized [18]: 

 

𝐸(𝑢, 𝑣) = ∫ ( 𝑤𝑇𝐽𝑃(𝛻3𝑓)𝑤 + 𝛼(|𝛻𝑢|2 + |𝛻𝑣|2) ) dxdy
Ω

 (2) 

 

where E(u,v) is the energy function to be minimized, Ω is the entire domain space, w(x,y) 

= ( u(x,y), v(x,y), 1 )T is the displacement, ∇u is the spatial gradient (ux , uy) 
T

 , u and v are 

zonal and meridional components of velocity, and ∇3f denotes the spatiotemporal gradient 

of grayscale intensity (Ix , Iy, It ).  
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 3.2. Operational RaINS Configuration 

Radar velocity flow field to be used in SWIRLS was calculated using a single set of 

parameters (Zc, ζ,  Lf,  Lc, σ, α, and ρ) that is described in Table 1. Subsequently, the 

maximum NWP reflectivity between 1000hPa and 100hPa was blended with the SWIRLS 

output with the following equation:  

 

𝑅𝑎𝐼𝑁𝑆(𝑇, 𝑑𝐵𝑍) = 𝑤(𝑇) ∗ 𝑁𝑊𝑃(𝑇, 𝑑𝐵𝑍) + (1 − 𝑤(𝑇)) ∗ 𝑆𝑊𝐼𝑅𝐿𝑆(𝑇, 𝑑𝐵𝑍)(3) 

 

where RaINS (T, dBZ) is the final nowcast output in units of reflectivity, SWIRLS (T, 

dBZ) is the output of SWIRLS extrapolated radar reflectivity in units of reflectivity, and 

w(T) is the time (T) varying hyperbolic tangent weighting function denoted by the 

following equation:  

 

𝑤(𝑇) = 𝛼 + 𝜀 × (1 + 𝑡𝑎𝑛ℎ{𝛾 × [𝑇 − 9]})    (4) 

 

where ε controls the rate at which w(T) rises (gradient), γ is a constant equal to 0.24, 

and T is the nowcast lead time in minutes. Equation 4 is just the simplified form of [8] and 

[13] where α is equals to zero. In this study, a single hyperbolic tangent function denoted 

by w1(T | ε = 0.50) was evaluated.  

In operational RaINS, one (1) hyperbolic tangent function was selected out of 13 

hyperbolic tangent functions wi (T | εi = 0.51, 0.46, 0.42, 0.39, 0.36, 0.32, 0.28, 0.25, 0.21, 

0.17, 0.14, 0.10, 0.07, and 0.00). The hyperbolic tangent function that minimizes the 

following equation (6) is selected.  

𝐸 𝑟𝑟𝑜𝑟𝑖(𝑑𝐵Z) = ∑ (𝑅𝐴𝐷𝐴𝑅𝑇(𝑑𝐵𝑍) − 𝑅𝑎𝐼𝑁𝑆𝑇,𝑖(𝑑𝐵𝑍))

−180

𝑇=0

2

                        (5) 

      𝑅𝑎𝐼𝑁𝑆𝑇,𝑖(𝑑𝐵𝑍) = 𝑤𝑖(𝑇) ∗ 𝑁𝑊𝑃(𝑑𝐵𝑍) + (1 − 𝑤𝑖(𝑇)) ∗ 𝑆𝑊𝐼𝑅𝐿𝑆(𝑑𝐵𝑍)  (6) 

      𝑤𝑖(𝑇) = 𝛼 + 𝜖𝑖 × (1 + 𝑡𝑎𝑛ℎ{𝛾 × [𝑇 − 9]})                                                  (7) 

 

where weight wi(T) which minimizes Errori (dBZ) is chosen. The variable Errori (dBZ) 

is the sum of the square difference between observed radar reflectivity RADAR (dBZ) at 

time T with RaINS nowcast using weight i at time T. Meanwhile, T is the past forecast or 

hindcast between now (T=0) and T=-10, -20, ..., -170, -180 minutes. This scheme 

introduces persistence into the RaINS nowcast. This paper compares the single constant 
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weight scheme (known as constant weighing in this study) with the operational weighting 

scheme that introduces persistence (called persistence weighing in this study).  Figure 4. 

depicts the single weight used in RaINS, while Figure 5 depicts the operational weighting 

scheme with persistence introduced in this study.  Table 2 summarizes the differences 

between RaINS in operational mode versus RaINS tested in this study.  

 

Table 1. Parameter values for ensemble average flow and for single parameter flow. 

Parameters Ensemble Average Flow Single Parameter Flow 

Zc 

(Threshold for significant convection) 
2/3 maximum reflectivity 2/3 maximum reflectivity 

ζ  6, 9, and 12 12 

Lf (Finest spatial scale) 1 1 

Lc (Coarsest spatial scale) 7 9 

σ 

(Gaussian convolution  

for image smoothing) 

18, 24 and 40 40 

α (Regularization parameter) 1000 1000 

ρ 

(Gaussian convolution for  

local scale smoothing) 

3, 4 and 9 9 

 

Table 2. RaINS in operational mode (middle column) and RaINS studied (right column). 

 RaINS Operational RaINS in this study 

SWIRLS radar velocity flow 
Average of ensemble flow  

(Table 1 column 2)  

Single member flow 

(Table 1 column 3)  

Hyperbolic tangent weights  

blending SWIRLS & NWP 

One weight selected out  

of several weights based  

on past radar observation  

(Figure 2) 

One single weight 

(Figure 3)  

NWP Reflectivity Level 

Maximum reflectivity  

between 1000hPa  

to 100hPa 

Average 850-750hPa  

Average 850-500hPa 
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Figure 4. Single hyperbolic tangent curve tested in this study. It resembles 

the first weight of the 13 ensembles of weights in Figure 5. 

 

 

Figure 5. Operational weighting scheme. Series of weights of which one is 

selected to blend SWIRLS-NWP based on past radar data. This introduces 

persistence in RaINS nowcast. 
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4.  Results and Discussion 

The performance of RaINS was evaluated during two (2) significant cyclonic 

vortex events. The time of verification are summarized in Table 3 while the domains of 

verification are depicted in Figures 6 and 7. Each radar observation and corresponding 

RaINS nowcast are paired together and mapped to the same domain (Figure 2; 1km 

domain). The resolution of radar observation and nowcast are 1km. The nowcasts are 

evaluated by defining rainfall as events exceeding 10dBZ. This threshold is arbitrarily 

chosen to evaluate and identify the best configuration of RaINS. RaINS is objectively 

evaluated by matching each nowcast grid and nowcast time with corresponding radar grid 

and radar time within the verification domain (Figures 6 and 7). The results of the match 

are depicted in the Contingency Table (Table 4). The Probability of Detection (POD) and 

False Alarm Ratio (FAR) are depicted by Equation 8.  

 

Table 3. The date and time for each stage of the storm that are used to verify RaINS. 

 

 
Date of Event /  

Time of Storm Stage 
04 - 05 November 2017 22-23 December 2017 

 

Stage of 

the Storm 

Initial  04:00 - 06:50 18:00 - 21:00 

Mature 13:00 - 15:50 21:10 - 01:00 

Decaying 22:00 - 00:50 01:10 - 05:00 
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Figure 6. The domain inside the cyclonic vortex (purple) and outside the vortex (red). 
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Figure 7. The domain inside the cyclonic vortex (purple) and outside the vortex (red). 
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Table 4. Contingency table calculated for each grid point at each time. 

 

Category 

Radar Observation 

Yes (>= 10 dBZ) No (< 10dBZ) 

 

Nowcast 

Yes (>= 10 dBZ) Hits False Alarms 

No (< 10dBZ)  Miss Correct Negatives 

 

𝑃𝑂𝐷 =
𝐻𝑖𝑡𝑠

𝐻𝑖𝑡𝑠 + 𝑀𝑖𝑠𝑠
; 𝐹𝐴𝑅 =

𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠

𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠 + 𝐻𝑖𝑡𝑠
           (8) 

 

Figures 8 and 9 depict the POD and FAR of RaINS using model simulated 

maximum reflectivity, 850-750hPa average reflectivity, and 850-500hPa average 

reflectivity aggregated over both cyclonic events in this study and areas inside and outside 

the storm. The maximum reflectivity gave higher POD than averaged reflectivity with 

relatively negligible change in FAR. This may be explained as follows.  

During the mature stage, the cloud base is lowered in the updraft region. The 

mechanism is explained as follows. The updraft entrains air from outside the cloud with 

moist rain-cooled air just below the rainy portion of the cloud. The air in the updraft 

region is cooled by evaporation of liquid water from rainfall and adiabatic expansion 

from vertical ascent [21]. Addition of moisture from rainfall regions of the cloud along 

with adiabatic cooling and steeper lapse read [21] leads to lower air parcel temperature 

and increased relative humidity. This lowers the lifted condensation level [22].    

On the other hand, in both the mature and dissipating storm stage, cloud height 

top expands from 15,000 feet in the initial stage to 30,000 feet and 40,000 feet 

respectively [21]. Therefore, the maximum reflectivity from 1000hPa to 100hPa may 

better capture the expansion of cloud height by using a deeper atmospheric depth 

compared to a narrow atmospheric depth represented by the average reflectivity fields of 

850-500hPa and 850-750hPa layers.   
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Figure 8. POD of RaINS for NWP reflectivity levels  
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Figure 9. FAR of RaINS for NWP reflectivity levels.  
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Meanwhile, the RaINS configuration which blends radar extrapolation using 

persistence weighing is more skilful than RaINS configuration using constant weight. 

This is indicated by Figures 10 which indicate higher POD and lower FAR of persistence 

weighing compared to fixed weight. The persistence term could have suppressed rainfall 

overestimation in RaINS. This persistence was created through the selection of a nowcast 

weight that most resembles radar observation three hours ago. Inclusion of past radar 

observation in RaINS in the form of the persistence term was considered a substitute for 

the absence of real time radar data assimilation into the NWP model.  

On the other hand, SWIRLS radar velocity flow computed as an ensemble average 

of several parameters (Zc, ζ,  Lf,  Lc, σ, α, and ρ) outperforms SWIRLS radar velocity 

flow computed using just a single member. Figure 11. showed that the ensemble average 

flow has marginally higher POD than single member flow with FAR nearly constant. 

This happens because each geographical setting has its own optimal parameters [11].  
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Figure 10.  POD (FAR) of persistence weight scheme versus constant weight scheme in left (right) figure.   
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Figure 11. POD(FAR) of ensemble average optical flow vs. single member optical flow in left (right) figure.  
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Nowcasting over a large domain involves multiple geographical settings. 

Therefore, averaging multiple parameters is a computationally cheap method of 

improving the skill score over a large domain.  Additionally, the averaging process 

cancels off random errors that may be present in each individual ensemble member. 

RaINS using persistence weighing in conjunction with the ensemble average optical flow 

outperforms RaINS with fixed weight in conjunction with single optical flow. Figures 

12 and 13 showed that RaINS has higher POD and lower FAR at all lead times, especially 

after 90 minutes. 
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Figure 12. POD vs. lead time; Persistence-Weight-Average-Flow vs. Fixed-Weight-Single-Flow. 
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Figure 13. FAR vs. lead time; Persistence-Weight-Average-Flow vs. Fixed-Weight-Single-Flow. 
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The useful lead time is defined as POD greater than FAR. This implies that the 

nowcast is more likely to hit than being a false alarm within a given lead time. Additionally, 

useful lead time is also defined as POD greater than 0.5. This means that the nowcast is more 

likely to hit rather than miss. Finally, useful lead time is given by FAR less than 0.5. This means 

that the probability of the nowcast being a false alarm is less than 0.5. Rainfall is defined by 

grid points having a value exceeding 10dBZ. Calculations of POD and FAR of RaINS indicate 

that RaINS has a useful lead time of 100 minutes for regions inside the storm or cyclonic vortex. 

On the other hand, RaINS has a reduced useful lead time of just 50 minutes for convective 

storms outside of the cyclonic vortex. These convective storms were shorter-lived, lasting less 

than 3 hours with rapid growth and decay in the order of minutes compared to the main cyclonic 

circulation. Figures 14  and 15 indicated that the skill of RaINS is reduced for convective 

storms outside the storm compared to the main storm inside the circulation.  

This reduction in skill was consistent with the work of [23,24] who both used WRF. 

[23] reported only one out of four local thunderstorms near Darwin, Australia was detected but 

[24] in contrast was able to accurately capture rainfall intensity and spatial distribution for 

cyclone Phailin. The drop in accuracy between large scale cyclonic circulations and smaller 

scale local thunderstorms occur because initiation and development of localized convective 

systems are stochastic in nature that could not be precisely predicted but may be analyzed 

statistically. To increase the NWP accuracy, [23] assimilated radiosonde data at a 3 hourly 

interval with WRF model that is initialized 10 hours before the local thunderstorm began. It 

was reported that four out of four local thunderstorms were accurately simulated by the WRF 

model. Hence, observational nudging at near-real time may be required to increase accuracy of 

nowcasts in local thunderstorms away from the main cyclonic circulation.  
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Figure 14. POD vs. lead time; inside compared to outside the storm.  
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Figure 15. FAR vs. lead time; inside compared to outside the storm.  
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In a nutshell, using the multiple weight configuration in conjunction with 

maximum NWP reflectivity calculated between 1000hPa to 100hPa blended with an 

ensemble average SWIRLS-QPF optical flow yielded the highest accuracy. This 

summary was true for storms in the cyclonic circulation and local storms away from the 

cyclonic circulation. 

 

5.         Conclusion 

The development and system design of RaINS are introduced in this paper.  Fine-

tuning of RaINS has been conducted using two cyclonic circulation cases for storms both 

inside the circulation itself and for convective scale storms away from the circulation. 

Evaluation of RaINS performance using POD and FAR revealed that maximum 1000hPa 

to 100hPa NWP reflectivity gives the highest skill level. RaINS is further improved when 

the NWP to radar extrapolation weight is selected by considering persistence based on 

past radar observations. Finally, a further increase in skill is noted when the average 

motion vector of radar extrapolation consists of the ensemble average of multiple 

parameters.  

The accuracy of the radar extrapolation may be improved by adopting deep 

learning precipitation nowcasting. As noted in [25], several deep learning nowcast 

models such as the Trajectory Gated-Recurrent Unit (TrajGRU) have been developed 

that can outperform the optical flow method for heavy rain. Hence, implementation of 

deep learning methods in the radar nowcast component in RaINS will be investigated in 

the future to compare its accuracy alongside with the SWIRLS optical flow method used 

in this study.  

This study also reveals a limitation of RaINS that needs to be addressed. RaINS 

is skillful in large scale cyclonic storms but suffers from a severe drop in skill for smaller 

scale convective storms. Further investigation should be performed in assimilating near-

real time observation to NWP forecast to predict the rapid evolution of smaller-scale 

convection.  
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